Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundMicrobes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH — an important global coral reef stressor — can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. ResultsWe test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. ConclusionsWe demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem change.more » « less
-
Abstract Over 2 billion people are unable to access safe, nutritious and sufficient food year-round. While global fisheries are considered key in providing essential nutrients to hundreds of millions of people around the globe, the specific contribution of small-scale fisheries to the nutrient supply given other available food supplies is unknown. Here, we combined multiple global databases to quantify the importance of marine small-scale fisheries to national-level nutrient supply of coastal populations. We found that, on average across assessed nutrients (iron, zinc, calcium, DHA + EPA and vitamins A and B12), small-scale fisheries contributed about 32% of overall global seafood nutrient supply, 17% of the nutrient supply from animal-sourced foods and 10% of nutrient supply from all foods. These global averages, however, underrepresent some key roles of ocean-based foods. Combining nutrient supply estimates with global estimates of inadequate nutrient intake, we found that about half of coastal countries that have a mean inadequate intake of at least 50% across assessed nutrients (iron, zinc, calcium, DHA + EPA and vitamins A and B12) rely on small scale fisheries for at least 15% of mean nutrient supply, and many rely on small scale fisheries for more than 30% of mean nutrient supply. Catch from small-scale fisheries is particularly important for the supply of vitamin B12, calcium and DHA + EPA, representing up to 100% of supply in selected countries. Our study demonstrates the significance of small-scale fisheries for nutritionally vulnerable coastal populations, emphasizing how effective fisheries management can contribute to public health.more » « less
-
The Health Impacts of Artificial Reef Advancement (HIARA; in the Malagasy language, “together”) study cohort was set up in December 2022 to assess the economic and nutritional importance of seafood for the coastal Malagasy population living along the Bay of Ranobe in southwestern Madagascar. Over the course of the research, which will continue until at least 2026, the primary question we seek to answer is whether the creation of artificial coral reefs can rehabilitate fish biomass, increase fish catch, and positively influence fisher livelihoods, community nutrition, and mental health. Through prospective, longitudinal monitoring of the ecological and social systems of Bay of Ranobe, we aim to understand the influence of seasonal and long-term shifts in marine ecological resources and their benefits to human livelihoods and health. Fourteen communities (12 coastal and two inland) were enrolled into the study including 450 households across both the coastal (n = 360 households) and inland (n = 90 households) ecosystems. In the ecological component, we quantify the extent and health of coral reef ecosystems and collect data on the diversity and abundance of fisheries resources. In the social component, we collect data on the diets, resource acquisition strategies, fisheries and agricultural practices, and other social, demographic and economic indicators, repeated every 3 months. At these visits, clinical measures are collected including anthropometric measures, blood pressure, and mental health diagnostic screening. By analyzing changes in fish catch and consumption arising from varying distances to artificial reef construction and associated impacts on fish biomass, our cohort study could provide valuable insights into the public health impacts of artificial coral reef construction on local populations. Specifically, we aim to assess the impact of changes in fish catch (caused by artificial reefs) on various health outcomes, such as stunting, underweight, wasting, nutrient intake, hypertension, anxiety, and depression.more » « less
-
Anthropogenic stressors like overfishing, land based runoff, and increasing temperatures cause the degradation of coral reefs, leading to the loss of corals and other calcifiers, increases in competitive fleshy algae, and increases in microbial pathogen abundance and hypoxia. To test the hypothesis that corals would be healthier by moving them off the benthos, a common garden experiment was conducted in which corals were translocated to midwater geodesic spheres (hereafter called Coral Reef Arks or Arks). Coral fragments translocated to the Arks survived significantly longer than equivalent coral fragments translocated to Control sites (i.e., benthos at the same depth). Over time, average living coral surface area and volume were higher on the Arks than the Control sites. The abundance and biomass of fish were also generally higher on the Arks compared to the Control sites, with more piscivorous fish on the Arks. The addition of Autonomous Reef Monitoring Structures (ARMS), which served as habitat for sessile and motile reef-associated organisms, also generally significantly increased fish associated with the Arks. Overall, the Arks increased translocated coral survivorship and growth, and exhibited knock-on effects such as higher fish abundance.more » « less
-
Reversing coral reef decline requires reducing environmental threats while actively restoring reef ecological structure and function. A promising restoration approach uses coral breeding to boost natural recruitment and repopulate reefs with genetically diverse coral communities. Recent advances in predicting spawning, capturing spawn, culturing larvae, and rearing settlers have enabled the successful propagation, settlement, and outplanting of coral offspring in all of the world's major reef regions. Nevertheless, breeding efforts frequently yield low survival, reflecting the type III survivorship curve of corals and poor condition of most reefs targeted for restoration. Furthermore, coral breeding programs are still limited in spatial scale and species diversity. Here, we highlight four priority areas for research and cooperative innovation to increase the effectiveness and scale of coral breeding in restoration: (1) expanding the number of restoration sites and species, (2) improving broodstock selection to maximize the genetic diversity and adaptive capacity of restored populations, (3) enhancing culture conditions to improve offspring health before and after outplanting, and (4) scaling up infrastructure and technologies for large‐scale coral breeding and restoration. Prioritizing efforts in these four areas will enable practitioners to address reef decline at relevant ecological scales, re‐establish self‐sustaining coral populations, and ensure the long‐term success of restoration interventions. Overall, we aim to guide the coral restoration community toward actions and opportunities that can yield rapid technical advances in larval rearing and coral breeding, foster interdisciplinary collaborations, and ultimately achieve the ecological restoration of coral reefs.more » « less
An official website of the United States government
