Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world’s coral reef fisheries.
This content will become publicly available on July 15, 2025
The Health Impacts of Artificial Reef Advancement (HIARA; in the Malagasy language, “together”) study cohort was set up in December 2022 to assess the economic and nutritional importance of seafood for the coastal Malagasy population living along the Bay of Ranobe in southwestern Madagascar. Over the course of the research, which will continue until at least 2026, the primary question we seek to answer is whether the creation of artificial coral reefs can rehabilitate fish biomass, increase fish catch, and positively influence fisher livelihoods, community nutrition, and mental health. Through prospective, longitudinal monitoring of the ecological and social systems of Bay of Ranobe, we aim to understand the influence of seasonal and long-term shifts in marine ecological resources and their benefits to human livelihoods and health. Fourteen communities (12 coastal and two inland) were enrolled into the study including 450 households across both the coastal (
- Award ID(s):
- 2022717
- PAR ID:
- 10550009
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Public Health
- Volume:
- 12
- ISSN:
- 2296-2565
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Protection of coastal ecosystems from deforestation may be the best way to protect coral reefs from sediment runoff. However, given the importance of generating economic activities for coastal livelihoods, the prohibition of development is often not feasible. In light of this, logging codes of practice have been developed to mitigate the impacts of logging on downstream ecosystems. However, no studies have assessed whether managed land‐clearing can occur in tandem with coral reef conservation goals.
This study quantifies the impacts of current land use and the risk of potential logging activities on downstream coral reef condition and fisheries using a novel suite of linked land‐sea models, using Kolombangara Island in the Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies stipulated in logging codes of practice to reduce these impacts as clearing extent increases.
We found that with present‐day land use, reductions in live and branching coral cover and increases in turf algae were associated with exposure to sediment runoff from catchments and log ponds. Critically, reductions in fish grazer abundance and biomass were associated with increasing sediment runoff, a functional group that accounts for ~25% of subsistence fishing. At low clearing extents, although best management practices minimize the exposure of coral reefs to increased runoff, it would still result in 32% of the reef experiencing an increase in sediment exposure. If clearing extent increased, best management practices would have no impact, with a staggering 89% of coral reef area at risk compared to logging with no management.
Synthesis and applications . Assessing trade‐offs between coastal development and protection of marine resources is a challenge for decision makers globally. Although development activities requiring clearing can be important for livelihoods, our results demonstrate that new logging in intact forest risks downstream resources important for both food and livelihood security. Importantly, our approach allows for spatially explicit recommendations for where terrestrial management might best complement marine management. Finally, given the critical degradation feedback loops that increased sediment runoff can reinforce on coral reefs, minimizing sediment runoff could play an important role in helping coral reefs recover from climate‐related disturbances. -
The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face.more » « less
-
Reef Conservation off the Hook: Can Market Interventions Make Coral Reef Fisheries More Sustainable?The overexploitation of coral reef fisheries threatens the persistence of reef ecosystems and the livelihoods and food security of millions of people. Market-based initiatives to increase fisheries sustainability have been widely implemented in industrialized commodity fisheries, but the suitability of these initiatives for coral reef fisheries has not been systematically investigated. Here, we present a typology of market-based interventions and coral reef fisheries sectors and identity promising approaches for each fishery archetype. For high value, export-oriented reef fisheries that are highly unsustainable (live reef food fish and dried sea cucumbers), traditional regulatory efforts including trade restrictions will be most effective. For high-value, export-oriented fisheries for highly fecund invertebrates (lobsters and mollusks), certification and ratings efforts, fishery improvement projects, and sustainable purchasing commitments can improve fishing practices and increase fisher market access and revenue. For lower-value fisheries targeting species for domestic or regional consumption, sustainable purchasing commitments among local buyers, consumer awareness campaigns, and local certification and ratings schemes hold promise for shifting attitudes toward sustainability and increasing food security for local communities. Finally, fisher empowerment efforts including direct access to local markets and market information, training on improved post-harvest methods, and formation of fisher associations hold promise for increasing fisher incomes, reducing wasteful catch, increasing food security, and de-incentivizing unsustainable practices. Despite the potential of market-based interventions, specific approaches must be carefully tailored to the ecological and social reality of these systems, including the inherent unsustainability of commercial coral reef fisheries, the limited capacity for fisheries governance, the limited financial support of market-based initiatives, and the threatened status of coral reef ecosystems globally.more » « less
-
Abstract Declining natural resources have contributed to a cultural renaissance across the Pacific that seeks to revive customary ridge‐to‐reef management approaches to protect freshwater and restore abundant coral reef fisheries. We applied a linked land–sea modeling framework based on remote sensing and empirical data, which couples groundwater nutrient export and coral reef models at fine spatial resolution. This spatially explicit (60 × 60 m) framework simultaneously tracks changes in multiple benthic and fish indicators as a function of community‐led marine closures, land‐use and climate change scenarios. We applied this framework in Hā‘ena and Ka‘ūpūlehu, located at opposite ends of the Hawaiian Archipelago to investigate the effects of coastal development and marine closures on coral reefs in the face of climate change. Our results indicated that projected coastal development and bleaching can result in a significant decrease in benthic habitat quality and community‐led marine closures can result in a significant increase in fish biomass. In general, Ka‘ūpūlehu is more vulnerable to land‐based nutrients and coral bleaching than Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave power, except for the shallow and wave‐sheltered back‐reef areas of Hā‘ena, which support high coral cover and act as nursery habitat for fishes. By coupling spatially explicit land–sea models with scenario planning, we identified priority areas on land where upgrading cesspools can reduce human impacts on coral reefs in the face of projected climate change impacts.