Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As the role of the Greenland Ice Sheet in the Arctic mercury (Hg) budget draws scrutiny, it is crucial to understand mercury cycling in glacial fjords, which control exchanges with the ocean. We present full water column measurements of total mercury (THg) and methylmercury (MeHg) in Sermilik Fjord, a large fjord in southeast Greenland fed by multiple marine-terminating glaciers, whose circulation and water mass transformations have been extensively studied. We show that THg (0.23-1.1 pM) and MeHg (0.02-0.17 pM) concentrations are similar to those in nearby coastal waters, while the exported glacially-modified waters are relatively depleted in inorganic mercury (Hg(II)), suggesting that inflowing ocean waters from the continental shelf are the dominant source of mercury species to the fjord. We propose that sediments initially suspended in glacier meltwaters scavenge particle-reactive Hg(II) and are subsequently buried, making the fjord a net sink of oceanic mercury.more » « less
-
Abstract Interest in health implications of Earth science research has significantly increased. Articles frequently dispense policy advice, for example, to reduce human contaminant exposures. Recommendations such as fish consumption advisories rarely reflect causal reasoning around tradeoffs or anticipate how scientific information will be received and processed by the media or vulnerable communities. Health is the product of interacting social and physical processes, yet predictable responses are often overlooked. Analysis of physical and social mechanisms, and health and non‐health tradeoffs, is needed to achieve policy benefits rather than “policy impact.” Dedicated funding mechanisms would improve the quality and availability of these analyses.more » « less
-
Abstract Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.more » « less
An official website of the United States government
