Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the South Atlantic Bight (SAB), responses of zooplankton communities to physical dynamics were evaluated monthly at two sites on the continental shelf offshore from Savannah, GA, USA, between December 2015 and December 2017. Zooplankton were collected in oblique net tows (202-μm). Samples were collected in two regions of the middle shelf: inner edge (Site 1: 25 m isobath, n = 22) and outer edge (Site 2: 40 m isobath, n = 21). Samples were also collected at a third site on the 40 m isobath, ~20 nm south of Site 2 in July and August 2016. Temperature, salinity and fluorescence data were recorded at each site. Overall, 57 taxa were identified with total abundances varying from 1 × 103 to 81 × 103 ind.m−3. Small copepods predominated; notably Paracalanus spp. The highest abundance was recorded in October 2016 at Site 1, following deep mixing induced by Hurricane Matthew. Interannual variability of zooplankton abundance was significant, with higher abundances in 2016 compared with 2017, reflecting higher river runoff in 2016. Samples from Site 3 yielded the largest Dolioletta gegenbauri bloom documented in the SAB. This 2-year time-series, for the first time, suggests that zooplankton communities on the SAB middle shelf region are significantly influenced by continental precipitation patterns.more » « less
-
Abstract Bloom‐forming gelatinous zooplankton occur circumglobally and significantly influence the structure of pelagic marine food webs and biogeochemical cycling through interactions with microbial communities. During bloom conditions especially, gelatinous zooplankton are keystone taxa that help determine the fate of primary production, nutrient remineralization, and carbon export. Using the pelagic tunicateDolioletta gegenbaurias a model system for gelatinous zooplankton, we carried out a laboratory‐based feeding experiment to investigate the potential ecosystem impacts of doliolid gut microbiomes and microbial communities associated with doliolid faecal pellets and the surrounding seawater. Metabarcoding targeting Bacteria and Archaea 16S rRNA genes/Archaea) and qPCR approaches were used to characterize microbiome assemblages. Comparison between sample types revealed distinct patterns in microbial diversity and biomass that were replicable across experiments. These observations support the hypothesis that through their presence and trophic activity, doliolids influence the structure of pelagic food webs and biogeochemical cycling in subtropical continental shelf systems where tunicate blooms are common. Bacteria associated with starved doliolids (representative of the resident gut microbiome) possessed distinct low‐biomass and low‐diversity microbial assemblages, suggesting that the doliolid microbiome is optimized to support a detrital trophic mode. Bacterial generaPseudoalteromomasandShimiawere the most abundant potential core microbiome taxa, similar to patterns observed in other marine invertebrates. Exploratory bioinformatic analyses of predicted functional genes suggest that doliolids, via their interactions with bacterial communities, may affect important biogeochemical processes including nitrogen, sulphur, and organic matter cycling.more » « less
-
Abstract Doliolids are common gelatinous grazers in marine ecosystems around the world and likely influence carbon cycling due to their large population sizes with high growth and excretion rates. Aggregations or blooms of these organisms occur frequently, but they are difficult to measure or predict because doliolids are fragile, under sampled with conventional plankton nets, and can aggregate on fine spatial scales (1–10 m). Moreover, ecological studies typically target a single region or site that does not encompass the range of possible habitats favoring doliolid proliferation. To address these limitations, we combined in situ imaging data from six coastal ecosystems, including the Oregon shelf, northern California, southern California Bight, northern Gulf of Mexico, Straits of Florida, and Mediterranean Sea, to resolve and compare doliolid habitat associations during warm months when environmental gradients are strong and doliolid blooms are frequently documented. Higher ocean temperature was the strongest predictor of elevated doliolid abundances across ecosystems, with additional variance explained by chlorophyllafluorescence and dissolved oxygen. For marginal seas with a wide range of productivity regimes, the nurse stage tended to comprise a higher proportion of the doliolids when total abundance was low. However, this pattern did not hold in ecosystems with persistent coastal upwelling. The doliolids tended to be most aggregated in oligotrophic systems (Mediterranea and southern California), suggesting that microhabitats within the water column favor proliferation on fine spatial scales. Similar comparative approaches can resolve the realized niche of fast‐reproducing marine animals, thus improving predictions for population‐level responses to changing oceanographic conditions.more » « less
-
Abstract Gelatinous zooplankton play a crucial role in pelagic marine food webs, however, due to methodological challenges and persistent misconceptions of their importance, the trophic role of gelatinous zooplankton remains poorly investigated. This is particularly true for small gelatinous zooplankton including the marine pelagic tunicate,Dolioletta gegenbauri.D. gegenbauriand other doliolid species occur persistently on wide subtropical shelves where they often produce massive blooms in association with shelf upwelling conditions. As efficient filter feeders and prodigious producers of relatively low‐density organic‐rich aggregates, doliolids are understood to contribute significantly to shelf production, pelagic ecology, and pelagic–benthic coupling. Utilizing molecular gut content analysis and stable isotope analysis approaches, the trophic interactions of doliolids were explored during bloom and non‐bloom conditions on the South Atlantic Bight continental shelf in the Western North Atlantic. Based on molecular gut content analysis, relative ingestion selectivity varied withD. gegenbaurilife stage. At all life stages, doliolids ingested a wide range of prey types and sizes, but exhibited selectivity for larger prey types including diatoms, ciliates, and metazoans. Experimental growth studies confirmed that metazoan prey were ingested, but indicated that they were not digested and assimilated. Stable isotopic composition (δ13C and δ15N) of wild‐caught doliolids, during bloom and non‐bloom conditions, were most consistent with a detrital‐supplemented diet. These observations suggest that the feeding ecology ofD. gegenbauriis more complex than previously reported, and have strong and unusual linkages to the microbial food web.more » « less
An official website of the United States government
