skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zooplankton community variability in the South Atlantic Bight (2015–2017)
Abstract In the South Atlantic Bight (SAB), responses of zooplankton communities to physical dynamics were evaluated monthly at two sites on the continental shelf offshore from Savannah, GA, USA, between December 2015 and December 2017. Zooplankton were collected in oblique net tows (202-μm). Samples were collected in two regions of the middle shelf: inner edge (Site 1: 25 m isobath, n = 22) and outer edge (Site 2: 40 m isobath, n = 21). Samples were also collected at a third site on the 40 m isobath, ~20 nm south of Site 2 in July and August 2016. Temperature, salinity and fluorescence data were recorded at each site. Overall, 57 taxa were identified with total abundances varying from 1 × 103 to 81 × 103 ind.m−3. Small copepods predominated; notably Paracalanus spp. The highest abundance was recorded in October 2016 at Site 1, following deep mixing induced by Hurricane Matthew. Interannual variability of zooplankton abundance was significant, with higher abundances in 2016 compared with 2017, reflecting higher river runoff in 2016. Samples from Site 3 yielded the largest Dolioletta gegenbauri bloom documented in the SAB. This 2-year time-series, for the first time, suggests that zooplankton communities on the SAB middle shelf region are significantly influenced by continental precipitation patterns.  more » « less
Award ID(s):
2023133 1459293
PAR ID:
10395216
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Plankton Research
Volume:
45
Issue:
2
ISSN:
0142-7873
Format(s):
Medium: X Size: p. 312-324
Size(s):
p. 312-324
Sponsoring Org:
National Science Foundation
More Like this
  1. Crustacean and rotifer density and biomass were measured from 2014 to 2025 in five drinking water reservoirs in southwestern Virginia, USA. These reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Falling Creek Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Falling Creek, Carvins Cove, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia. The dataset consists of integrated vertical tow samples from the whole water column, just the epilimnion, and just the hypolimnion (as the difference between the full water column and epilimnion tows), as well as discrete depth measurements collected with a Schindler trap. Most samples were collected at the deepest site of each reservoir adjacent to the dam. Sampling frequency and duration varied among reservoirs and years and included weekly to monthly routine monitoring as well as intensive 24-hour sampling campaigns. In 2014-2016, zooplankton samples were collected approximately fortnightly in the spring, summer, and autumn months at Beaverdam Reservoir, Carvins Cove Reservoir, and Gatewood Reservoirs. Falling Creek Reservoir samples were collected weekly to monthly in spring and summer 2014, and Spring Hollow Reservoir samples were collected approximately fortnightly in the spring, summer, and autumn months of 2015 and 2016. In 2019, zooplankton samples were collected approximately weekly to monthly from April to November at Beaverdam Reservoir and April to September at Falling Creek Reservoir. In 2020, zooplankton samples were collected approximately weekly to monthly from May to December at Beaverdam Reservoir and June to September at Falling Creek Reservoir. In 2021, zooplankton were collected monthly from March to December in Beaverdam Reservoir. In 2022, zooplankton were collected monthly from January to May at Beaverdam Reservoir. In 2023-2025, zooplankton were collected approximately monthly from March or April to December in Beaverdam Reservoir. Falling Creek Reservoir zooplankton samples were sparsely collected during 2021 to 2025. During the 24-hour sampling campaigns conducted in Beaverdam Reservoir from 2019-2022, samples were collected from both the deepest pelagic site and a shallow littoral site. 
    more » « less
  2. Andersen, Ken (Ed.)
    Abstract Zooplankton composition and distribution influence prey quality and availability for higher trophic levels, yet ecological forces structuring communities are not often resolved on spatial scales relevant to predator–prey encounters (1–10 m). Because continental shelf water columns are often vertically stratified, fine-scale interactions may influence overall biological productivity. Using a towed imaging system, we measured meso- and macrozooplankton abundances (>2.2 mm equivalent spherical diameter) in the South Atlantic Bight between the 25 and 45 m isobaths in August 2021. Zooplankton were parsed into four key traits (size, carbon content, trophic strategy, and swimming speed), and buoyancy frequency was used to identify discrete vertical oceanographic zones. Trait diversity was less variable in mixed waters due to the dominance of low carbon content zooplankton or passive swimmers. Upwelling intrusions generated high chlorophyll-a and sharp stratification, which favoured high-carbon, fast swimming zooplankton. Trait group abundances were often higher in these deeper, sharply stratified waters, suggesting that intrusions generally favour secondary production, with gelatinous organisms gradually becoming more dominant as the pycnocline weakens. The distribution of size classes, however, did not change among water masses. Stratification and mixing generate distinct environments and consistent trait assemblages, potentially improving predictions of community responses to oceanographic structure. 
    more » « less
  3. Crustacean and rotifer density and biomass were measured from 2014 to 2022 in five drinking water reservoirs in southwestern Virginia, USA. These reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Falling Creek Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Falling Creek, Carvins Cove, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia. The dataset consists of integrated vertical tow samples from the whole water column, just the epilimnion, and just the hypolimnion (as the difference between the full water column and epilimnion tows), as well as discrete depth measurements collected with a Schindler trap. Most samples were collected at the deepest site of each reservoir adjacent to the dam. Sampling frequency and duration varied among reservoirs and years and included weekly to monthly routine monitoring as well as intensive 24-hour sampling campaigns. In 2014-2016, zooplankton samples were collected approximately fortnightly in the spring, summer, and autumn months at Beaverdam Reservoir, Carvins Cove Reservoir, and Gatewood Reservoirs. Falling Creek Reservoir samples were collected weekly to monthly in spring and summer 2014, and Spring Hollow Reservoir samples were collected approximately fortnightly in the spring, summer, and autumn months of 2015 and 2016. In 2019, zooplankton samples were collected approximately weekly to monthly from April to November at Beaverdam Reservoir and April to September at Falling Creek Reservoir. In 2020, zooplankton samples were collected approximately weekly to monthly from May to December at Beaverdam Reservoir and June to September at Falling Creek Reservoir. In 2021 and 2022, zooplankton were collected monthly from March to December in 2021 and January to May in 2022 at Beaverdam Reservoir. Falling Creek Reservoir zooplankton samples in 2021 and 2022 were sparsely collected. During the 24-hour sampling campaigns conducted in Beaverdam Reservoir from 2019-2022, samples were collected from both the deepest pelagic site and a shallow littoral site. 
    more » « less
  4. This data package provides abundance data for zooplankton collected during seasonal transect cruises conducted as part of the Northeast U.S. Shelf Long-Term Ecological Research (NES-LTER) program, ongoing since 2018. Zooplankton are collected at standard NES-LTER transect stations (L1–L11) and the Martha’s Vineyard Coastal Observatory (MVCO) via oblique tows, using a 61-cm Bongo net with two mesh sizes (335 µm and 150 µm). The transect extends southward from near Martha’s Vineyard, Massachusetts, reaching approximately 150 km offshore along longitude 70 deg 53 min W, covering the continental shelf from nearshore to the shelf break, with sampling depths between 20 and 200 meters. Only the 335-µm mesh data is included here, as samples from this net are preserved on board and shipped to Morski Instytut Rybacki in Szczecin, Poland, where they are counted and identified to the lowest possible taxonomic level. Counts of taxa identified are provided by the NOAA’s Northeast Fisheries Science Center. Samples from the 150 um are preserved for other purposes and will be published as a separate data package. This second version of the data package includes staged and unstaged abundance data in volumetric (100 m³) and aerial (10 m²) units from the 335-µm net. Supplemental tables provide metadata for the cruises and stations. 
    more » « less
  5. The cyanobacterium  Trichodesmium  plays an essential role supporting ocean productivity by relieving nitrogen limitation via dinitrogen (N 2 ) fixation. The two common Trichodesmium clades,  T. erythraeum  and  T. thiebautii , are both observed in waters along the West Florida Shelf (WFS). We hypothesized that these taxa occupy distinct realized niches, where  T. thiebautii  is the more oceanic clade. Samples for DNA and water chemistry analyses were collected on three separate WFS expeditions (2015, 2018, and 2019) spanning multiple seasons; abundances of the single copy housekeeping gene  rnpB  from both clades were enumerated via quantitative PCR. We conducted a suite of statistical analyses to assess Trichodesmium  clade abundances in the context of the physicochemical data. We observed a consistent coastal vs. open ocean separation of the two clades:  T. erythraeum  was found in shallow waters where the concentrations of dissolved iron (dFe) and the groundwater tracer Ba were significantly higher, while  T. thiebautii  abundance was positively correlated with water column depth. The Loop Current intrusion in 2015 with entrained Missisippi River water brought higher dFe and elevated abundance of both clades offshore of the 50 m isobath, suggesting that both clades are subject to Fe limitation on the outer shelf. Whereas, previous work has observed that  T. thiebautii  is more abundant than  T. erythraeum  in open ocean surface waters, this is the first study to examine  Trichodesmium  niche differentiation in a coastal environment. Understanding the environmental niches of these two key taxa bears important implications for their contributions to global nitrogen and carbon cycling and their response to global climate change. 
    more » « less