skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2023269

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Submarine melting has been implicated in the accelerated retreat of marine‐terminating glaciers globally. Energetic ocean flows, such as subglacial discharge plumes, are known to enhance submarine melting in their immediate vicinity. Using observations and a large eddy simulation, we demonstrate that discharge plumes emit high‐frequency internal gravity waves that propagate along glacier termini and transfer energy to distant regions of the terminus. Our analysis of wave characteristics and their correlation with subglacial discharge forcing suggest that they derive their energy from turbulent motions within the discharge plume and its surface outflow. Accounting for the near‐terminus velocities associated with these waves increases predicted melt rates by up to 70%. This may help to explain known discrepancies between observed melt rates and theoretical predictions. Because the dynamical ingredients—a buoyant plume rising through a stratified ocean—are common to many tidewater glacier systems, such internal waves are likely to be widespread.

     
    more » « less
  2. Abstract

    At tidewater glacier termini, ocean‐glacier interactions hinge on two sources of freshwater—submarine melt and subglacial discharge—yet these freshwater fluxes are often unconstrained in their magnitude, seasonality, and relationship. With measurements of ocean velocity, temperature and salinity, fjord budgets can be evaluated to partition the freshwater flux into submarine melt and subglacial discharge. We apply these methods to calculate the freshwater fluxes at LeConte Glacier, Alaska, across a wide range of oceanic and atmospheric conditions during six surveys in 2016–2018. We compare these ocean‐derived fluxes with an estimate of subglacial discharge from a surface mass balance model and with estimates of submarine melt from multibeam sonar and autonomous kayaks, finding relatively good agreement between these independent estimates. Across spring, summer, and fall, the relationship between subglacial discharge and submarine melt follows a scaling law predicted by standard theory (melt ∼ discharge1/3), although the total magnitude of melt is an order of magnitude larger than theoretical estimates. Subglacial discharge is the dominant driver of variability in melt, while the dependence of melt on fjord properties is not discernible. A comparison of oceanic budgets with glacier records indicates that submarine melt removes 33%–49% of the ice flux into the terminus across spring, summer, and fall periods. Thus, melt is a significant component of the glacier's mass balance, and we find that melt correlates with seasonal retreat; however, melt does not appear to directly amplify calving.

     
    more » « less
  3. Abstract

    Fjords are conduits for heat and mass exchange between tidewater glaciers and the coastal ocean, and thus regulate near‐glacier water properties and submarine melting of glaciers. Entrainment into subglacial discharge plumes is a primary driver of seasonal glacial fjord circulation; however, outflowing plumes may continue to influence circulation after reaching neutral buoyancy through the sill‐driven mixing and recycling, or reflux, of glacial freshwater. Despite its importance in non‐glacial fjords, no framework exists for how freshwater reflux may affect circulation in glacial fjords, where strong buoyancy forcing is also present. Here, we pair a suite of hydrographic observations measured throughout 2016–2017 in LeConte Bay, Alaska, with a three‐dimensional numerical model of the fjord to quantify sill‐driven reflux of glacial freshwater, and determine its influence on glacial fjord circulation. When paired with subglacial discharge plume‐driven buoyancy forcing, sill‐generated mixing drives distinct seasonal circulation regimes that differ greatly in their ability to transport heat to the glacier terminus. During the summer, 53%–72% of the surface outflow is refluxed at the fjord's shallow entrance sill and is subsequently re‐entrained into the subglacial discharge plume at the fjord head. As a result, near‐terminus water properties are heavily influenced by mixing at the entrance sill, and circulation is altered to draw warm, modified external surface water to the glacier grounding line at 200 m depth. This circulatory cell does not exist in the winter when freshwater reflux is minimal. Similar seasonal behavior may exist at other glacial fjords throughout Southeast Alaska, Patagonia, Greenland, and elsewhere.

     
    more » « less
  4. Abstract. Frontal ablation has caused 32 %–66 % of Greenland Ice Sheet mass loss since 1972, and despite its importance in driving terminus change, ocean thermal forcing remains crudely incorporated into large-scale ice sheet models. In Greenland, local fjord-scale processes modify the magnitude of thermal forcing at the ice–ocean boundary but are too small scale to be resolved in current global climate models. For example, simulations used in the Ice Sheet Intercomparison Project for CMIP6 (ISMIP6) to predict future ice sheet change rely on the extrapolation of regional ocean water properties into fjords to drive terminus ablation. However, the accuracy of this approach has not previously been tested due to the scarcity of observations in Greenland fjords, as well as the inability of fjord-scale models to realistically incorporate icebergs. By employing the recently developed IceBerg package within the Massachusetts Institute of Technology general circulation model (MITgcm), we here evaluate the ability of ocean thermal forcing parameterizations to predict thermal forcing at tidewater glacier termini. This is accomplished through sensitivity experiments using a set of idealized Greenland fjords, each forced with equivalent ocean boundary conditions but with varying tidal amplitudes, subglacial discharge, iceberg coverage, and bathymetry. Our results indicate that the bathymetric obstruction of external water is the primary control on near-glacier thermal forcing, followed by iceberg submarine melting. Despite identical ocean boundary conditions, we find that the simulated fjord processes can modify grounding line thermal forcing by as much as 3 °C, the magnitude of which is largely controlled by the relative depth of bathymetric sills to the Polar Water–Atlantic Water thermocline. However, using a common adjustment for fjord bathymetry we can still predict grounding line thermal forcing within 0.2 °C in our simulations. Finally, we introduce new parameterizations that additionally account for iceberg-driven cooling that can accurately predict interior fjord thermal forcing profiles both in iceberg-laden simulations and in observations from Kangiata Sullua (Ilulissat Icefjord).

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  5. Abstract Frontal ablation, the combination of submarine melting and iceberg calving, changes the geometry of a glacier's terminus, influencing glacier dynamics, the fate of upwelling plumes and the distribution of submarine meltwater input into the ocean. Directly observing frontal ablation and terminus morphology below the waterline is difficult, however, limiting our understanding of these coupled ice–ocean processes. To investigate the evolution of a tidewater glacier's submarine terminus, we combine 3-D multibeam point clouds of the subsurface ice face at LeConte Glacier, Alaska, with concurrent observations of environmental conditions during three field campaigns between 2016 and 2018. We observe terminus morphology that was predominately overcut (52% in August 2016, 63% in May 2017 and 74% in September 2018), accompanied by high multibeam sonar-derived melt rates (4.84 m d −1 in 2016, 1.13 m d −1 in 2017 and 1.85 m d −1 in 2018). We find that periods of high subglacial discharge lead to localized undercut discharge outlets, but adjacent to these outlets the terminus maintains significantly overcut geometry, with an ice ramp that protrudes 75 m into the fjord in 2017 and 125 m in 2018. Our data challenge the assumption that tidewater glacier termini are largely undercut during periods of high submarine melting. 
    more » « less