skip to main content


This content will become publicly available on May 1, 2024

Title: Persistent overcut regions dominate the terminus morphology of a rapidly melting tidewater glacier
Abstract Frontal ablation, the combination of submarine melting and iceberg calving, changes the geometry of a glacier's terminus, influencing glacier dynamics, the fate of upwelling plumes and the distribution of submarine meltwater input into the ocean. Directly observing frontal ablation and terminus morphology below the waterline is difficult, however, limiting our understanding of these coupled ice–ocean processes. To investigate the evolution of a tidewater glacier's submarine terminus, we combine 3-D multibeam point clouds of the subsurface ice face at LeConte Glacier, Alaska, with concurrent observations of environmental conditions during three field campaigns between 2016 and 2018. We observe terminus morphology that was predominately overcut (52% in August 2016, 63% in May 2017 and 74% in September 2018), accompanied by high multibeam sonar-derived melt rates (4.84 m d −1 in 2016, 1.13 m d −1 in 2017 and 1.85 m d −1 in 2018). We find that periods of high subglacial discharge lead to localized undercut discharge outlets, but adjacent to these outlets the terminus maintains significantly overcut geometry, with an ice ramp that protrudes 75 m into the fjord in 2017 and 125 m in 2018. Our data challenge the assumption that tidewater glacier termini are largely undercut during periods of high submarine melting.  more » « less
Award ID(s):
2023674 2023269
NSF-PAR ID:
10457411
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Annals of Glaciology
ISSN:
0260-3055
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    At tidewater glacier termini, ocean‐glacier interactions hinge on two sources of freshwater—submarine melt and subglacial discharge—yet these freshwater fluxes are often unconstrained in their magnitude, seasonality, and relationship. With measurements of ocean velocity, temperature and salinity, fjord budgets can be evaluated to partition the freshwater flux into submarine melt and subglacial discharge. We apply these methods to calculate the freshwater fluxes at LeConte Glacier, Alaska, across a wide range of oceanic and atmospheric conditions during six surveys in 2016–2018. We compare these ocean‐derived fluxes with an estimate of subglacial discharge from a surface mass balance model and with estimates of submarine melt from multibeam sonar and autonomous kayaks, finding relatively good agreement between these independent estimates. Across spring, summer, and fall, the relationship between subglacial discharge and submarine melt follows a scaling law predicted by standard theory (melt ∼ discharge1/3), although the total magnitude of melt is an order of magnitude larger than theoretical estimates. Subglacial discharge is the dominant driver of variability in melt, while the dependence of melt on fjord properties is not discernible. A comparison of oceanic budgets with glacier records indicates that submarine melt removes 33%–49% of the ice flux into the terminus across spring, summer, and fall periods. Thus, melt is a significant component of the glacier's mass balance, and we find that melt correlates with seasonal retreat; however, melt does not appear to directly amplify calving.

     
    more » « less
  2. Abstract. The effect of the North Atlantic Ocean on the Greenland Ice Sheet through submarine melting of Greenland's tidewater glacier calving fronts is thought to be a key driver of widespread glacier retreat, dynamic mass loss and sea level contribution from the ice sheet. Despite its critical importance, problems of process complexity and scale hinder efforts to represent the influence of submarine melting in ice-sheet-scale models. Here we propose parameterizing tidewater glacier terminus position as a simple linear function of submarine melting, with submarine melting in turn estimated as a function of subglacial discharge and ocean temperature. The relationship is tested, calibrated and validated using datasets of terminus position, subglacial discharge and ocean temperature covering the full ice sheet and surrounding ocean from the period 1960–2018. We demonstrate a statistically significant link between multi-decadal tidewater glacier terminus position change and submarine melting and show that the proposed parameterization has predictive power when considering a population of glaciers. An illustrative 21st century projection is considered, suggesting that tidewater glaciers in Greenland will undergo little further retreat in a low-emission RCP2.6 scenario. In contrast, a high-emission RCP8.5 scenario results in a median retreat of 4.2 km, with a quarter of tidewater glaciers experiencing retreat exceeding 10 km. Our study provides a long-term and ice-sheet-wide assessment of the sensitivity of tidewater glaciers to submarine melting and proposes a practical and empirically validated means of incorporating ocean forcing into models of the Greenland ice sheet. 
    more » « less
  3. Abstract

    Fjords are conduits for heat and mass exchange between tidewater glaciers and the coastal ocean, and thus regulate near‐glacier water properties and submarine melting of glaciers. Entrainment into subglacial discharge plumes is a primary driver of seasonal glacial fjord circulation; however, outflowing plumes may continue to influence circulation after reaching neutral buoyancy through the sill‐driven mixing and recycling, or reflux, of glacial freshwater. Despite its importance in non‐glacial fjords, no framework exists for how freshwater reflux may affect circulation in glacial fjords, where strong buoyancy forcing is also present. Here, we pair a suite of hydrographic observations measured throughout 2016–2017 in LeConte Bay, Alaska, with a three‐dimensional numerical model of the fjord to quantify sill‐driven reflux of glacial freshwater, and determine its influence on glacial fjord circulation. When paired with subglacial discharge plume‐driven buoyancy forcing, sill‐generated mixing drives distinct seasonal circulation regimes that differ greatly in their ability to transport heat to the glacier terminus. During the summer, 53%–72% of the surface outflow is refluxed at the fjord's shallow entrance sill and is subsequently re‐entrained into the subglacial discharge plume at the fjord head. As a result, near‐terminus water properties are heavily influenced by mixing at the entrance sill, and circulation is altered to draw warm, modified external surface water to the glacier grounding line at 200 m depth. This circulatory cell does not exist in the winter when freshwater reflux is minimal. Similar seasonal behavior may exist at other glacial fjords throughout Southeast Alaska, Patagonia, Greenland, and elsewhere.

     
    more » « less
  4. Abstract Marine-terminating glaciers on the Antarctic Peninsula (AP) have retreated, accelerated and thinned in response to climate change in recent decades. Ocean warming has been implicated as a trigger for these changes in glacier dynamics, yet little data exist near glacier termini to assess the role of ocean warming here. We use remotely-sensed iceberg melt rates seaward of two glaciers on the eastern and six glaciers on the western AP from 2013 to 2019 to explore connections between variations in ocean conditions and glacier frontal ablation. We find iceberg melt rates follow regional ocean temperature variations, with the highest melt rates (mean ≈ 10 cm d −1 ) at Cadman and Widdowson glaciers in the west and the lowest melt rates (mean ≈ 0.5 cm d −1 ) at Crane Glacier in the east. Near-coincident glacier frontal ablation rates from 2014 to 2018 vary from ~450 m a −1 at Edgeworth and Blanchard glaciers to ~3000 m a −1 at Seller Glacier, former Wordie Ice Shelf tributary. Variations in iceberg melt rates and glacier frontal ablation rates are significantly positively correlated around the AP (Spearman's ρ = 0.71, p -value = 0.003). We interpret this correlation as support for previous research suggesting submarine melting of glacier termini exerts control on glacier frontal dynamics around the AP. 
    more » « less
  5. Abstract. The frontal flux balance of a medium-sized tidewater glacier in westernGreenland in the summer is assessed by quantifying the individual components(ice flux, retreat, calving, and submarine melting) through a combination ofdata and models. Ice flux and retreat are obtained from satellite data.Submarine melting is derived using a high-resolution ocean model informed bynear-ice observations, and calving is estimated using a record of calvingevents along the ice front. All terms exhibit large spatial variability alongthe ∼5 km wide ice front. It is found that submarine melting accountsfor much of the frontal ablation in small regions where two subglacialdischarge plumes emerge at the ice front. Away from the subglacial plumes,the estimated melting accounts for a small fraction of frontal ablation.Glacier-wide, these estimates suggest that mass loss is largely controlled bycalving. This result, however, is at odds with the limited presence oficebergs at this calving front – suggesting that melt rates in regionsoutside of the subglacial plumes may be underestimated. Finally, we arguethat localized melt incisions into the glacier front can be significantdrivers of calving. Our results suggest a complex interplay of melting andcalving marked by high spatial variability along the glacier front.

     
    more » « less