skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2023436

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wave energy converters typically use various control methods to extract energy from ocean waves. The objective of the control system is to optimize the energy extraction process, taking into account the dynamics of the system and the wave conditions. The task of deriving the optimal control laws of wave energy converter arrays for regular and irregular waves using the Pontryagin minimum principle was previously investigated in the literature. The result is a combination between the singular arc and bang-bang control laws. For irregular waves, some complexity arises due to the radiation state-space representation, which requires ignoring the hydrodynamic coupling terms related to the added mass and radiation-damping coefficients; this reduces the computational complexity of the control force but adversely affects the solution's accuracy. Also, the derived control laws are specific to a particular wave condition. Recently, the optimal control of a flexible buoy wave energy converter was derived using the convolution representation for the radiation force. In this work, the optimal control laws of flexible buoy wave energy converters are modified to simulate wave energy converter arrays; then, the results are compared to those obtained by dropping the hydrodynamic radiation coupling terms. Although using a convolution representation adds computational complexity to the optimal control problem, it generates an equation that is generic to any wave condition, can be used with any wave spectrum, and provides an expression for the switching condition. 
    more » « less
    Free, publicly-accessible full text available September 2, 2024
  2. null (Ed.)
    The wave excitation force is required in some control algorithms of wave energy converters. Excitation force is not, however, directly measurable. Therefore, to obtain excitation force information for control implementation, a number of excitation force estimators have been developed. The estimation performance is usually validated by low-fidelity simulations. This paper assesses the performance of a wave estimator in a Computational Fluid Dynamics (CFD) based Numerical Wave Tank (CNWT), where the estimator collects necessary measurements in-line with the high-fidelity simulation. The proposed simulation framework can be directly applied for a controlled wave energy converter. Numerical simulations are conducted on the implemented estimator, and the estimated excitation force is compared with a benchmark force that is extracted from a diffraction test. 
    more » « less
  3. null (Ed.)
    A novel Variable-Shape Buoy Wave Energy Converter (VSB WEC) that aims at eliminating the requirement of reactive power is analyzed in this paper. Unlike conventional Fixed Shape Buoy Wave Energy Converters (FSB WECs), the VSB WEC allows continuous shape-changing (flexible) responses to ocean waves. The non-linear interaction between the device and waves is demonstrated to result in more power when using simple, low-cost damping control system. High fidelity numerical simulations are conducted to compare the performance of a VSB WEC to a conventional FSB WEC, of the same volume and mass, in terms of power conversion, maximum displacements, and velocities. A Computational Fluid Dynamics (CFD) based Numerical Wave Tank (CNWT), developed using ANSYS 2-way fluid-structure interaction (FSI) is used for simulations. The results show that the average power conversion is significantly increased when using the VSB WEC. 
    more » « less