skip to main content


Search for: All records

Award ID contains: 2024198

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic reconnection in naturally occurring and laboratory settings often begins locally and elongates, or spreads, in the direction perpendicular to the plane of reconnection. Previous work has largely focused on current sheets with a uniform thickness, for which the predicted spreading speed for anti‐parallel reconnection is the local speed of the current carriers. We derive a scaling theory of three‐dimensional (3D) spreading of collisionless anti‐parallel reconnection in a current sheet with its thickness varying in the out‐of‐plane direction, both for spreading from a thinner to thicker region and a thicker to thinner region. We derive an expression for calculating the time it takes for spreading to occur for a current sheet with a given profile of its thickness. A key result is that when reconnection spreads from a thinner to a thicker region, the spreading speed in the thicker region is slower than both the Alfvén speed and the speed of the local current carriers by a factor of the ratio of thin to thick current sheet thicknesses. This is important because magnetospheric and solar observations have previously measured the spreading speed to be slower than previously predicted, so the present mechanism might explain this feature. We confirm the theory via a parametric study using 3D two‐fluid numerical simulations. We use the prediction to calculate the time scale for reconnection spreading in Earth's magnetotail during geomagnetic activity. The results are also potentially important for understanding reconnection spreading in solar flares and the dayside magnetopause of Earth and other planets.

     
    more » « less
  2. Abstract

    Electron ring velocity space distributions have previously been seen in numerical simulations of magnetic reconnection exhausts and have been suggested to be caused by the magnetization of the electron outflow jet by the compressed reconnected magnetic fields (Shuster et al., 2014,https://doi.org/10.1002/2014GL060608). We present a theory of the dependence of the major and minor radii of the ring distributions solely in terms of upstream (lobe) plasma conditions, thereby allowing a prediction of the associated temperature and temperature anisotropy of the rings in terms of upstream parameters. We test the validity of the prediction using 2.5‐dimensional particle‐in‐cell (PIC) simulations with varying upstream plasma density and temperature, finding excellent agreement between the predicted and simulated values. We confirm the Shuster et al. suggestion for the cause of the ring distributions, and also find that the ring distributions are located in a region marked by a plateau, or shoulder, in the reconnected magnetic field profile. The predictions of the temperature are consistent with observed electron temperatures in dipolarization fronts, and may provide an explanation for the generation of plasma with temperatures in the 10s of MK in super‐hot solar flares. A possible extension of the model to dayside reconnection is discussed. Since ring distributions are known to excite whistler waves, the present results should be useful for quantifying the generation of whistler waves in reconnection exhausts.

     
    more » « less
  3. Context. Flux ropes in the solar wind are a key element of heliospheric dynamics and particle acceleration. When associated with current sheets, the primary formation mechanism is magnetic reconnection and flux ropes in current sheets are commonly used as tracers of the reconnection process. Aims. Whilst flux ropes associated with reconnecting current sheets in the solar wind have been reported, their occurrence, size distribution, and lifetime are not well understood. Methods. Here we present and analyse new Solar Orbiter magnetic field data reporting novel observations of a flux rope confined to a bifurcated current sheet in the solar wind. Comparative data and large-scale context is provided by Wind. Results. The Solar Orbiter observations reveal that the flux rope, which does not span the current sheet, is of ion scale, and in a reconnection formation scenario, existed for a prolonged period of time as it was carried out in the reconnection exhaust. Wind is also found to have observed clear signatures of reconnection at what may be the same current sheet, thus demonstrating that reconnection signatures can be found separated by as much as ∼2000 Earth radii, or 0.08 au. Conclusions. The Solar Orbiter observations provide new insight into the hierarchy of scales on which flux ropes can form, and show that they exist down to the ion scale in the solar wind. The context provided by Wind extends the spatial scale over which reconnection signatures have been found at solar wind current sheets. The data suggest the local orientations of the current sheet at Solar Orbiter and Wind are rotated relative to each other, unlike reconnection observed at smaller separations; the implications of this are discussed with reference to patchy vs. continuous reconnection scenarios. 
    more » « less
  4. Observations in Earth’s turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane (z) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z, enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration. 
    more » « less