Abstract Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic particles. We employ large-scale 3D particle-in-cell simulations of reconnection in magnetically dominated ( σ = 10) pair plasmas to study the energization physics of high-energy particles. We identify an acceleration mechanism that only operates in 3D. For weak guide fields, 3D plasmoids/flux ropes extend along the z -direction of the electric current for a length comparable to their cross-sectional radius. Unlike in 2D simulations, where particles are buried in plasmoids, in 3D we find that a fraction of particles with γ ≳ 3 σ can escape from plasmoids by moving along z , and so they can experience the large-scale fields in the upstream region. These “free” particles preferentially move in z along Speiser-like orbits sampling both sides of the layer and are accelerated linearly in time—their Lorentz factor scales as γ ∝ t , in contrast to γ ∝ t in 2D. The energy gain rate approaches ∼ eE rec c , where E rec ≃ 0.1 B 0 is the reconnection electric field and B 0 the upstream magnetic field. The spectrum of free particles is hard, dN free / d γ ∝ γ − 1.5 , contains ∼20% of the dissipated magnetic energy independently of domain size, and extends up to a cutoff energy scaling linearly with box size. Our results demonstrate that relativistic reconnection in GRB and AGN jets may be a promising mechanism for generating ultra-high-energy cosmic rays.
more »
« less
Faster form of electron magnetic reconnection with a finite length X-line
Observations in Earth’s turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane (z) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z, enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.
more »
« less
- PAR ID:
- 10322116
- Date Published:
- Journal Name:
- Physical review letters
- Volume:
- 127
- ISSN:
- 1092-0145
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate particle acceleration in an MHD-scale system of multiple current sheets by performing 2D and 3D MHD simulations combined with a test particle simulation. The system is unstable for the tearing-mode instability, and magnetic islands are produced by magnetic reconnection. Due to the interaction of magnetic islands, the system relaxes to a turbulent state. The 2D (3D) case both yield −5/3 (− 11/3 and −7/3) power-law spectra for magnetic and velocity fluctuations. Particles are efficiently energized by the generated turbulence, and form a power-law tail with an index of −2.2 and −4.2 in the energy distribution function for the 2D and 3D case, respectively. We find more energetic particles outside magnetic islands than inside. We observe super-diffusion in the 2D (∼ t 2.27 ) and 3D (∼ t 1.2 ) case in the energy space of energetic particles.more » « less
-
ABSTRACT Three-dimensional kinetic-scale turbulence is studied numerically in the regime where electrons are strongly magnetized (the ratio of plasma species pressure to magnetic pressure is βe = 0.1 for electrons and βi = 1 for ions). Such a regime is relevant in the vicinity of the solar corona, the Earth’s magnetosheath, and other astrophysical systems. The simulations, performed using the fluid-kinetic spectral plasma solver (sps) code, demonstrate that the turbulent cascade in such regimes can reach scales smaller than the electron inertial scale, and results in the formation of electron-scale current sheets (ESCS). Statistical analysis of the geometrical properties of the detected ESCS is performed using an algorithm based on the medial axis transform. A typical half-thickness of the current sheets is found to be on the order of electron inertial length or below, while their half-length falls between the electron and ion inertial length. The pressure–strain interaction, used as a measure of energy dissipation, exhibits high intermittency, with the majority of the total energy exchange occurring in current structures occupying approximately 20 per cent of the total volume. Some of the current sheets corresponding to the largest pressure–strain interaction are found to be associated with Alfvénic electron jets and magnetic configurations typical of reconnection. These reconnection candidates represent about 1 per cent of all the current sheets identified.more » « less
-
Abstract Using 3D particle-in-cell simulation, we characterize energy conversion, as a function of guide magnetic field, in a thin current sheet in semirelativistic plasma, with relativistic electrons and subrelativistic protons. There, magnetic reconnection, the drift-kink instability (DKI), and the flux-rope kink instability all compete and interact in their nonlinear stages to convert magnetic energy to plasma energy. We compare fully 3D simulations with 2D in two different planes to isolate reconnection and DKI effects. In zero guide field, these processes yield distinct energy conversion signatures: ions gain more energy than electrons in 2Dxy(reconnection), while the opposite is true in 2Dyz(DKI), and the 3D result falls in between. The flux-rope instability, which occurs only in 3D, allows more magnetic energy to be released than in 2D, but the rate of energy conversion in 3D tends to be lower. Increasing the guide magnetic field strongly suppresses DKI, and in all cases slows and reduces the overall amount of energy conversion; it also favors electron energization through a process by which energy is first stored in the motional electric field of flux ropes before energizing particles. Understanding the evolution of the energy partition thus provides insight into the role of various plasma processes, and is important for modeling radiation from astrophysical sources such as accreting black holes and their jets.more » « less
-
Abstract Pickup ions (PUIs) play a crucial role in the heliosphere, contributing to the mediation of large-scale structures such as the distant solar wind, the heliospheric termination shock, and the heliopause. While magnetic reconnection is thought to be a common process in the heliosphere due to the presence of heliospheric current sheets, it is poorly understood how PUIs might affect the evolution of magnetic reconnection. Although it is reasonable to suppose that PUIs decrease the reconnection rate since the plasma beta becomes much larger than 1 when PUIs are included, we show for the first time that such a supposition is invalid and that PUI-induced turbulence, heat conduction, and viscosity can preferentially boost magnetic reconnection in heliospheric current sheets in the distant solar wind. This suggests that it is critical to include the effect of the turbulence, heat conduction, and viscosity caused by PUIs to understand the dynamics of magnetic reconnection in the outer heliosphere.more » « less