- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Angeli, Peter A (1)
-
Bhui, Rahul (1)
-
Buckner, Randy L (1)
-
DiNicola, Lauren M (1)
-
Du, Jingnan (1)
-
Eldaief, Mark C (1)
-
Gershman, Samuel J (1)
-
Hillman, Hanna (1)
-
Kaiser, Stephanie (1)
-
Ladopoulou, Joanna (1)
-
Reznik, Daniel (1)
-
Saadon-Grosman, Noam (1)
-
Schurr, Roey (1)
-
Sun, Wendy (1)
-
Xue, Aihuiping (1)
-
Yeo, B_T Thomas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The organization of cerebral networks was estimated within individuals with intensive, repeat sampling of fMRI data. A hierarchical organization emerged in each individual that delineated first-, second-, and third-order cortical networks. Regions of distinct third-order association networks consistently exhibited side-by-side juxtapositions that repeated across multiple cortical zones, with clear and robust functional specialization among the embedded regions.more » « less
-
Schurr, Roey; Reznik, Daniel; Hillman, Hanna; Bhui, Rahul; Gershman, Samuel J (, Nature Human Behaviour)Computational phenotyping has emerged as a powerful tool for characterizing individual variability across a variety of cognitive domains. An individual’s computational phenotype is defined as a set of mechanistically interpretable parameters obtained from fitting computational models to behavioural data. However, the interpretation of these parameters hinges critically on their psychometric properties, which are rarely studied. To identify the sources governing the temporal variability of the computational phenotype, we carried out a 12-week longitudinal study using a battery of seven tasks that measure aspects of human learning, memory, perception and decision making. To examine the influence of state effects, each week, participants provided reports tracking their mood, habits and daily activities. We developed a dynamic computational phenotyping framework, which allowed us to tease apart the time-varying effects of practice and internal states such as affective valence and arousal. Our results show that many phenotype dimensions covary with practice and affective factors, indicating that what appears to be unreliability may reflect previously unmeasured structure. These results support a fundamentally dynamic understanding of cognitive variability within an individual.more » « less
An official website of the United States government
