skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2025152

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Transient analysis is vital to the planning and operation of electric power systems. Traditional transient analysis utilizes numerical methods to solve the differential-algebraic equations (DAEs) to compute the trajectories of quantities in the grid. For this, various numerical integration methods have been developed and used for decades. On the other hand, solving the DAEs for a relatively large system such as power grids is computationally intensive and is particularly challenging to perform online. In this paper, a novel machine learning (ML) based approach is proposed and developed to predict post-contingency trajectories of a generator in the time domain. The training data are generated by using an off-line simulation platform considering random disturbance occurrences and clearing times. As a proof-of-concept study, the proposed ML-based approach is applied to a single generator. A Long Short Term Memory (LSTM) network representation of the selected generator is successfully trained to capture the dependencies of its dynamics across a sufficiently long time span. In the online assessment stage, the LSTM network predicts the entire post-contingency transient trajectories given initial conditions of the power system triggered by system changes due to fault scenarios. Numerical experiments in the New York/New England 16-machine 86-bus power system show that the trained LSTM network accurately predicts the generator’s transient trajectories. Compared to existing numerical integration methods, the post-disturbance trajectories of generator’s dynamic states are computed much faster using the trained predictor, offering great promises for significantly accelerating both offline and online transient studies. 
    more » « less