skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 21, 2025

Title: Effects of global change drivers on the expression of pathogenicity and stress genes in dryland soil fungi
ABSTRACT The impacts of global climate change on dryland fungi have been understudied even though fungi are extremely sensitive to changes in the environment. Considering that many fungi are pathogens of plants and animals, including humans, their responses to anthropogenic change could have important implications for public health and food security. In this study, we investigated the potential physiological responses (i.e., metatranscriptomics) of pathogenicity and stress in dryland fungi exposed to global change drivers, drought, and the physical disturbance associated with land use. Specifically, we wanted to assess if there was an increase in the transcription of genes associated to pathogenicity and stress in response to global change drivers. In addition, we wanted to investigate which pathogenicity and stress genes were consistently differentially expressed under the different global change conditions across the heterogeneous landscape (i.e., microsite) of the Chihuahuan desert. We observed increased transcription of pathogenicity and stress genes, with specific genes being most upregulated in response to global change drivers. Additionally, climatic conditions linked to different microsites, such as those found under patches of vegetation, may play a significant role. We provide evidence supporting the idea that environmental stress caused by global change could contribute to an increase of pathogenicity as global climate changes. Specifically, increases in the transcription of stress and virulence genes, coupled with variations in gene expression, could lead to the onset of pathogenicity. Our work underscores the importance of studying dryland fungi exposed to global climate change and increases in existing fungal pathogens, as well as the emergence of new fungal pathogens, and consequences to public health and food security. IMPORTANCEThe effects of global climate change on dryland fungi and consequences to our society have been understudied despite evidence showing that pathogenic fungi increase in abundance under global climate change. Moreover, there is a growing concern that global climate change will contribute to the emergence of new fungal pathogens. Yet, we do not understand what mechanisms might be driving this increase in virulence and the onset of pathogenicity. In this study, we investigate how fungi respond to global change drivers, physical disturbance, and drought, in a dryland ecosystem in terms of pathogenicity and stress. We find that indeed, under global change drivers, there is an increase in the transcription and expression of genes associated to pathogenicity and stress, but that microclimatic conditions matter. Our study shows the importance of investigating dryland fungi exposed to global climate change and impacts on our society, which may include threats to public health and food security.  more » « less
Award ID(s):
2025166
PAR ID:
10556988
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
McMahon, Katherine
Publisher / Repository:
journals.asm.org (Atypon)
Date Published:
Journal Name:
mSphere
Volume:
9
Issue:
11
ISSN:
2379-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is affecting fungal communities and their function in terrestrial ecosystems. Despite making progress in the understanding of how the fungal community responds to global change drivers in natural ecosystems, little is known on how fungi respond at the species level. Understanding how fungal species respond to global change drivers, such as warming, is critical, as it could reveal adaptation pathways to help us to better understand ecosystem functioning in response to global change. Here, we present a model study to track species-level responses of fungi to warming—and associated drying—in a decade-long global change field experiment; we focused on two free-living saprotrophic fungi which were found in high abundance in our site, Mortierella and Penicillium. Using microbiological isolation techniques, combined with whole genome sequencing of fungal isolates, and community level metatranscriptomics, we investigated transcription-level differences of functional categories and specific genes involved in catabolic processes, cell homeostasis, cell morphogenesis, DNA regulation and organization, and protein biosynthesis. We found that transcription-level responses were mostly species-specific but that under warming, both fungi consistently invested in the transcription of critical genes involved in catabolic processes, cell morphogenesis, and protein biosynthesis, likely allowing them to withstand a decade of chronic stress. Overall, our work supports the idea that fungi that invest in maintaining their catabolic rates and processes while growing and protecting their cells may survive under global climate change. 
    more » « less
  2. Andrews, B (Ed.)
    Abstract The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes. 
    more » « less
  3. ABSTRACT Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa , a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. IMPORTANCE Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa —their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens. 
    more » « less
  4. Tortosa, Pablo (Ed.)
    ABSTRACT Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus calledPandora neoaphidisin the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance againstPandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show thatPandoracan acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCEEntomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales—an important but understudied group of fungi. 
    more » « less
  5. null (Ed.)
    Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties. 
    more » « less