skip to main content


Search for: All records

Award ID contains: 2025214

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Modern scanning microscopes can image materials with up to sub-atomic spatial and sub-picosecond time resolutions, but these capabilities come with large volumes of data, which can be difficult to store and analyze. We report the Fast Autonomous Scanning Toolkit (FAST) that addresses this challenge by combining a neural network, route optimization, and efficient hardware controls to enable a self-driving experiment that actively identifies and measures a sparse but representative data subset in lieu of the full dataset. FAST requires no prior information about the sample, is computationally efficient, and uses generic hardware controls with minimal experiment-specific wrapping. We test FAST in simulations and a dark-field X-ray microscopy experiment of a WSe2film. Our studies show that a FAST scan of <25% is sufficient to accurately image and analyze the sample. FAST is easy to adapt for any scanning microscope; its broad adoption will empower general multi-level studies of materials evolution with respect to time, temperature, or other parameters.

     
    more » « less
    Free, publicly-accessible full text available September 7, 2024
  2. Free, publicly-accessible full text available May 15, 2024
  3. Obtaining large field enhancement in low-refractive-index dielectric materials is highly relevant to many photonic and quantum optics applications. However, confining light in these materials is challenging, owing to light leakage through coupling to continuum modes in the surrounding environment. We investigate the possibility of achieving high quality factors in low-index dielectric resonators through the bound states in the continuum (BIC). Our simulations demonstrate that destructive interference between leaky modes can be achieved by tuning the geometrical parameters of the resonator arrays, leading to the emergence of quasi-BIC in resonators that have a small index contrast to the underlying substrates. The resultant large field enhancement gives rise to giant quality factors and Purcell effects. By introducing vertical mirror symmetry, the quasi-BIC can be tuned into an ideal BIC. In addition, the quasi-BIC can modify the emission patterns of the coupled emitters, rendering highly directional and focused far-field emission. These findings may provide a path for the practical implementation of photonic and quantum devices based on low-index dielectric materials.

     
    more » « less
  4. The construction of functional nano-/micro-architectures through self-assembly and self-organization of organic molecules and polymeric materials plays an important role in the development of many technologies. In this study, we report the spontaneous formation of uniform polymer microrods with lengths of up to a few tens of micrometers from paraffin wax. Through a solvent attrition approach, colloidal structures of paraffin wax are introduced into water. After the initial growth stage, the microrods undergo morphological transformation and end-to-end aggregation, processes likely driven by thermodynamics to create equilibrium structures with minimal interfacial energies. The polymer microrods can effectively absorb hydrophobic nanoparticles, indicating their potential to serve as host materials for functional components. The formation of polymer microrods from paraffin wax and their spontaneous growth mechanism discovered in this study may provide new insights to the self-assembly of microstructures. 
    more » « less
  5. null (Ed.)