skip to main content


Search for: All records

Award ID contains: 2025377

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Distributed market structures for local, transactive energy trading can be modeled with ecological systems, such as mycorrhizal networks, which have evolved to facilitate interplant carbon exchange in forest ecosystems. However, the complexity of these ecological systems can make it challenging to understand the effect that adopting these models could have on distributed energy systems and the magnitude of associated performance parameters. We therefore simplified and implemented a previously developed blueprint for mycorrhizal energy market models to isolate the effect of the mycorrhizal intervention in allowing buildings to redistribute portions of energy assets on competing local, decentralized marketplaces. Results indicate that the applied mycorrhizal intervention only minimally affects market and building performance indicators—increasing market self-consumption, decreasing market self-sufficiency, and decreasing building weekly savings across all seasonal (winter, fall, summer) and typological (residential, mixed-use) cases when compared to a fixed, retail feed-in-tariff market structure. The work concludes with a discussion of opportunities for further expansion of the proposed mycorrhizal market framework through reinforcement learning as well as limitations and policy recommendations considering emerging aggregated distributed energy resource (DER) access to wholesale energy markets.

     
    more » « less
  2. The resource distribution strategies of trees and plants in the forest are applied here as inspiration for the development of a blueprint for transactive, hybrid solar and storage microgrids. We used the Biomimicry Institute’s Biomimicry Spiral and their toolbox as a design methodology to inform the structural and functional characteristics of this peer-to-peer microgrid energy market and propose its utility in addressing some of the challenges associated with grid integration of distributed energy resources (DERs). We reviewed literature from the ecological domain on mycorrhizal networks and biological market theory to extract key insights into the possible structure and function of a transactive energy market modeled after the mutualism between trees and mycorrhizae. Our process revealed insights into how overlapping, virtual energy markets might grow, contract, adapt, and evolve through a dynamic network-based protocol to compete and survive in rapidly changing environments. We conclude with a discussion of the promise and limitations involved in translating the derived conceptual blueprints into a cyber-physical system and its potential for deployment in the real world as a novel energy market infrastructure.

     
    more » « less