The resource distribution strategies of trees and plants in the forest are applied here as inspiration for the development of a blueprint for transactive, hybrid solar and storage microgrids. We used the Biomimicry Institute’s Biomimicry Spiral and their toolbox as a design methodology to inform the structural and functional characteristics of this peer-to-peer microgrid energy market and propose its utility in addressing some of the challenges associated with grid integration of distributed energy resources (DERs). We reviewed literature from the ecological domain on mycorrhizal networks and biological market theory to extract key insights into the possible structure and function of a transactive energy market modeled after the mutualism between trees and mycorrhizae. Our process revealed insights into how overlapping, virtual energy markets might grow, contract, adapt, and evolve through a dynamic network-based protocol to compete and survive in rapidly changing environments. We conclude with a discussion of the promise and limitations involved in translating the derived conceptual blueprints into a cyber-physical system and its potential for deployment in the real world as a novel energy market infrastructure.
more » « less- Award ID(s):
- 2025377
- PAR ID:
- 10470075
- Publisher / Repository:
- Transdisciplinary Journal of Engineering & Science
- Date Published:
- Journal Name:
- Transdisciplinary Journal of Engineering & Science
- Volume:
- 13
- ISSN:
- 1949-0569
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Peer-to-peer energy trading within microgrid (MG) communities emerges as a key enabler of the future transactive distribution system and the transactive electricity market. Energy trading within MGs refers to the idea that the surplus energy of one MG can be used to satisfy the demand of another MG or a group of MGs that form an MG community. These communities can be dynamically established through time, based on the variations of demand and supply of the interconnected MGs. In many modern MGs, Electric Vehicles (EVs) have been considered as a viable storage option due to their ease of use (plug-and-play) and their growing adoption rates by drivers. On the other hand, the dynamic nature of EVs escalates the uncertainty in the transactive distribution system. In this paper, we study the problem of energy trading among MGs and EVs with the aim of power loss minimization where there is uncertainty. We propose a novel Bayesian Coalition Game (BCG) based algorithm, which allows the MGs and EVs to reduce the overall power loss by allowing them to form coalitions intelligently. The proposed scheme is compared with a conventional coalitional game theory-based approach and a Q-learning based approach. Our results show significant improvement over other compared techniques.more » « less
-
null (Ed.)The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm's viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithmsmore » « less
-
The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm’s viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithms.more » « less
-
Power grids are undergoing major changes due to the rapid adoption of intermittent renewable energy resources and the increased availability of energy storage devices. These trends drive smart-grid operators to envision a future where peer-to-peer energy trading occurs within microgrids, leading to the development of Transactive Energy Systems. Blockchains have garnered significant interest from both academia and industry for their potential application in decentralized TES, in large part due to their high level of resilience. In this paper, we introduce a novel class of attacks against blockchain based TES, which target the gateways that connect market participants to the system. We introduce a general model of blockchain based TES and study multiple threat models and attack strategies. We also demonstrate the impact of these attacks using a testbed based on GridLAB-D and a private Ethereum network. Finally, we study how to mitigate these attack.more » « less
-
The emergence of blockchains and smart contracts have renewed interest in electrical cyber-physical systems, especially in the area of transactive energy systems. However, despite recent advances, there remain significant challenges that impede the practical adoption of blockchains in transactive energy systems, which include implementing complex market mechanisms in smart contracts, ensuring safety of the power system, and protecting residential consumers’ privacy. To address these challenges, we present TRANSAX, a blockchain-based transactive energy system that provides an efficient, safe, and privacy-preserving market built on smart contracts. Implementation and deployment of TRANSAX in a verifiably correct and efficient way is based on VeriSolid, a framework for the correct-by-construction development of smart contracts, and RIAPS, a middleware for resilient distributed power systemsmore » « less