Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We found the inner electromagnetic structure of subauroral ion drifts (SAID) in the SAID‐STEVE events documented by the Swarm spacecraft and numerically simulated the ionospheric feedback instability (IFI) development for one of the four similar events. Good quantitative agreement of the modeling results with the observed features shows that the ionospheric feedback mechanism captures their basic underlying physics. Simulations require nonlinear saturation of the IFI‐generated dispersive Alfvén waves. That is, a strong driving field of STEVE‐linked SAID with a deep density trough leads to a nonlinear system of dispersive Alfvén waves coupled with the density perturbation and parallel electric fields. As shown earlier, these fields produce the suprathermal electron population and energy balance necessary for the STEVE and Picket Fence radiation. Therefore, our results predict their inner structure.more » « less
-
Abstract Previous studies have shown that Strong Thermal Emission Velocity Enhancement (STEVE) events occur at the end of a prolonged substorm expansion phase. However, the connection between STEVE occurrence and substorms and the global high‐latitude ionospheric electrodynamics associated with the development of STEVE and non‐STEVE substorms are not yet well understood. The focus of this paper is to identify electrodynamics features that are unique to STEVE events through a comprehensive analysis of ionospheric convection patterns estimated from SuperDARN plasma drift and ground‐based magnetometer data using the Assimilative Mapping of Geospace Observations (AMGeO) procedure. Results from AMGeO are further analyzed using principal component analysis and superposed epoch analysis for 32 STEVE and 32 non‐STEVE substorm events. The analysis shows that the magnitude of cross‐polar cap potential drop is generally greater for STEVE events. In contrast to non‐STEVE substorms, the majority of STEVE events investigated are accompanied by with a pronounced extension of the dawn‐cell into the pre‐midnight subauroral latitudes, reminiscent of the Harang reversal convection feature where the eastward electrojet overlaps with the westward electrojet, which tends to prolong over substorm expansion and recovery phases. This is consistent with the presence of an enhanced subauroral electric field confirmed by previous STEVE studies. The global and localized features of high‐latitude ionospheric convection associated with optical STEVE events characterized in this paper provide important insights into cross‐scale magnetosphere‐ionosphere coupling mechanisms that differentiate STEVE events from non‐STEVE substorm events.more » « less
-
Key Points Detailed analysis of spectral transition of a Stable Auroral Red (SAR) Arc into Strong Thermal Emission Velocity Enhancement (STEVE) emission Ionospheric threshold conditions may be a requirement for the evolution of STEVE Basic parameters of transition features from SAR Arc to STEVE presentedmore » « less
-
This paper reviews key properties and major unsolved problems about Strong Thermal Emission Velocity Enhancement (STEVE) and the picket fence. We first introduce the basic characteristics of STEVE and historical observations of STEVE-like emissions, particularly the case on 11 September 1891. Then, we discuss major open questions about STEVE: 1) Why does STEVE preferentially occur in equinoxes? 2) How do the solar wind and storm/substorm conditions control STEVE? 3) Why is STEVE rare, despite that STEVE does not seem to require extreme driving conditions? 4) What are the multi-scale structures of STEVE? 5) What mechanisms determine the properties of the picket fence? 6) What are the chemistry and emission mechanisms of STEVE? 7) What are the impacts of STEVE on the ionosphere−thermosphere system? Also, 8) what is the relation between STEVE, stable auroral red (SAR) arcs, and the subauroral proton aurora? These issues largely concern how STEVE is created as a unique mode of response of the subauroral magnetosphere−ionosphere−thermosphere coupling system. STEVE, SAR arcs, and proton auroras, the three major types of subauroral emissions, require energetic particle injections to the pre-midnight inner magnetosphere and interaction with cold plasma. However, it is not understood why they occur at different times and why they can co-exist and transition from one to another. Strong electron injections into the pre-midnight sector are suggested to be important for driving intense subauroral ion drifts (SAID). A system-level understanding of how the magnetosphere creates distinct injection features, drives subauroral flows, and disturbs the thermosphere to create optical emissions is required to address the key questions about STEVE. The ionosphere−thermosphere modeling that considers the extreme velocity and heating should be conducted to answer what chemical and dynamical processes occur and how much the STEVE luminosity can be explained. Citizen scientist photographs and scientific instruments reveal the evolution of fine-scale structures of STEVE and their connection to the picket fence. Photographs also show the undulation of STEVE and the localized picket fence. High-resolution observations are required to resolve fine-scale structures of STEVE and the picket fence, and such observations are important to understand underlying processes in the ionosphere and thermosphere.more » « less
An official website of the United States government
