skip to main content


Title: High‐Latitude Ionospheric Electrodynamics During STEVE and Non‐STEVE Substorm Events
Abstract

Previous studies have shown that Strong Thermal Emission Velocity Enhancement (STEVE) events occur at the end of a prolonged substorm expansion phase. However, the connection between STEVE occurrence and substorms and the global high‐latitude ionospheric electrodynamics associated with the development of STEVE and non‐STEVE substorms are not yet well understood. The focus of this paper is to identify electrodynamics features that are unique to STEVE events through a comprehensive analysis of ionospheric convection patterns estimated from SuperDARN plasma drift and ground‐based magnetometer data using the Assimilative Mapping of Geospace Observations (AMGeO) procedure. Results from AMGeO are further analyzed using principal component analysis and superposed epoch analysis for 32 STEVE and 32 non‐STEVE substorm events. The analysis shows that the magnitude of cross‐polar cap potential drop is generally greater for STEVE events. In contrast to non‐STEVE substorms, the majority of STEVE events investigated are accompanied by with a pronounced extension of the dawn‐cell into the pre‐midnight subauroral latitudes, reminiscent of the Harang reversal convection feature where the eastward electrojet overlaps with the westward electrojet, which tends to prolong over substorm expansion and recovery phases. This is consistent with the presence of an enhanced subauroral electric field confirmed by previous STEVE studies. The global and localized features of high‐latitude ionospheric convection associated with optical STEVE events characterized in this paper provide important insights into cross‐scale magnetosphere‐ionosphere coupling mechanisms that differentiate STEVE events from non‐STEVE substorm events.

 
more » « less
Award ID(s):
2025481 1928403 1848544
NSF-PAR ID:
10406996
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
4
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There has been an exciting recent development in auroral research associated with the discovery of a new subauroral phenomenon called STEVE (Strong Thermal Emission Velocity Enhancement). Although STEVE has been documented by amateur night sky watchers for decades, it is as yet an unidentified upper atmosphere phenomenon. Observed first by amateur auroral photographers, STEVE appears as a narrow luminous structure across the night sky over thousands of kilometers in the east‐west direction. In this paper, we present the first statistical analysis of the properties of 28 STEVE events identified using Time History of Events and Macroscale Interactions during Substorms (THEMIS) all‐sky imager and the Redline Emission Geospace Observatory (REGO) database. We find that STEVE occurs about 1 hr after substorm onset at the end of a prolonged expansion phase. On average, theALindex magnitude is larger and the expansion phase has a longer duration for STEVE events compared to subauroral ion drifts or substorms. The average duration for STEVE is about 1 hr, and its latitudinal width is ~20 km, which corresponds to ~¼ of the width of narrow auroral structures like streamers. STEVE typically has an equatorward displacement from its initial location of about 50 km and a longitudinal extent of 2,145 km.

     
    more » « less
  2. Abstract

    To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h.

     
    more » « less
  3. Abstract

    The formation of polar cap density enhancements, such as tongues‐of‐ionization (TOIs), are often attributed to enhanced dayside reconnection and convection due to solar wind changes. However, ionospheric poleward moving density enhancements can also form in the absence of changes in the solar wind. This study examines how TOI and patch events that are not triggered by solar wind changes relate to magnetospheric processes, specifically substorms. Based on total electron content and Super Dual Auroral Radar Network (SuperDARN) observations, we find substorms that occur at the same time as TOIs are associated with sudden enhancements in dayside poleward flows during the substorm expansion phase. Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations also show enhanced field‐aligned currents (FACs) that extend into the dayside ionosphere during this period. We suggest that the global enhancement of FACs and convection during these substorms are the drivers of these TOIs by enhancing dayside convection and transporting high‐density lower‐latitude plasma into the polar cap. However, we also find that not all substorms are coincident with polar cap density enhancements. A superposed epoch study showed that the AL index for TOIs during substorms is not particularly stronger than substorms without TOIs, but epoch studies of AMPERE observations do show events with TOIs to have a higher total FAC on both the dayside and nightside. Our results show the importance of TOI formation during substorms when solar wind drivers are absent, and the importance of considering substorms in the global current system. This work also shows the need to incorporate substorms into models of high‐latitude global convection and currents.

     
    more » « less
  4. Abstract

    The dawn‐dusk asymmetry of magnetic depression is a characteristic feature of the storm main phase. Recently Ohtani (2021,https://doi.org/10.1029/2021JA029643) reported that its magnitude is correlated with the dawnside westward auroral electrojet (AEJ) intensity, and suggested that the dawnside AEJ intensification is a fundamental process of the stormtime magnetosphere‐ionosphere coupling. In this study we observationally address the cause of the dawnside AEJ intensification in terms of four scenarios. That is, the dawnside AEJ intensifies because (a) the external driving of global convection strengthens, (b) solar wind compression enhances energetic electron precipitation, and therefore, ionospheric conductance, through wave‐particle interaction, (c) the substorm current wedge forms in the dawn sector, and (d) energetic electrons injected by nightside substorms drift dawnward, and the subsequent precipitation enhances ionospheric conductance. We find an event that fits each scenario, and therefore, none of these scenarios can be precluded. However, the result of a superposed epoch analysis shows that some causes are more prevalent than others. More specifically, (a) although the enhancement of external driving may precondition the dawnside AEJ intensification, it is rarely the direct cause; (b) external compression probably explains only a small fraction of the events; (c) prior to the dawnside AEJ intensification, the westward AEJ tends to intensify in the midnight sector along with mid‐latitude positive bays, which suggests that the substorm injection of energetic electrons is the most prevalent cause. This last result may also be explained by the dawnside expansion of the substorm current wedge, which, however, is arguably far less common.

     
    more » « less
  5. Abstract

    Using Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA) satellite observations and ground‐based observations by the THEMIS all‐sky imagers (ASIs) and SuperDARN radars, we determine how the equatorward boundary locations of ring current ions and plasma sheet electrons at pre‐midnight relate to occurrence of strong thermal emission velocity enhancement (STEVE) and intense subauroral ion drifts (SAID) during substorms. We found that the STEVE events are associated with a sharper gradient of electron precipitating flux, lower precipitating ion flux, and a narrower (<1°) latitudinal gap between the equatorward boundaries of trapped ring current ions and precipitating plasma sheet electrons and narrower region‐2 field‐aligned currents (FACs) than for the non‐STEVE events. The narrow gap of the particle boundaries contains intense SAID, higher upflow velocity, lower trough density, and slightly higher electron temperature than those for the non‐STEVE events. The non‐STEVE substorms have much wider gaps between the trapped ions and precipitating electrons, and subauroral polarization streams (SAPS) do not show intense SAID. These results indicate that subauroral flows and downward FACs for the STEVE events can only flow within the latitudinally narrow subauroral low‐conductance region between the ion and electron boundaries, resulting in intense SAID and heating. During the non‐STEVE events, the SAPS flows can flow in the latitudinally wide region without forming intense SAID.

     
    more » « less