Abstract To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h.
more »
« less
High‐Latitude Ionospheric Electrodynamics During STEVE and Non‐STEVE Substorm Events
Abstract Previous studies have shown that Strong Thermal Emission Velocity Enhancement (STEVE) events occur at the end of a prolonged substorm expansion phase. However, the connection between STEVE occurrence and substorms and the global high‐latitude ionospheric electrodynamics associated with the development of STEVE and non‐STEVE substorms are not yet well understood. The focus of this paper is to identify electrodynamics features that are unique to STEVE events through a comprehensive analysis of ionospheric convection patterns estimated from SuperDARN plasma drift and ground‐based magnetometer data using the Assimilative Mapping of Geospace Observations (AMGeO) procedure. Results from AMGeO are further analyzed using principal component analysis and superposed epoch analysis for 32 STEVE and 32 non‐STEVE substorm events. The analysis shows that the magnitude of cross‐polar cap potential drop is generally greater for STEVE events. In contrast to non‐STEVE substorms, the majority of STEVE events investigated are accompanied by with a pronounced extension of the dawn‐cell into the pre‐midnight subauroral latitudes, reminiscent of the Harang reversal convection feature where the eastward electrojet overlaps with the westward electrojet, which tends to prolong over substorm expansion and recovery phases. This is consistent with the presence of an enhanced subauroral electric field confirmed by previous STEVE studies. The global and localized features of high‐latitude ionospheric convection associated with optical STEVE events characterized in this paper provide important insights into cross‐scale magnetosphere‐ionosphere coupling mechanisms that differentiate STEVE events from non‐STEVE substorm events.
more »
« less
- PAR ID:
- 10406996
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 4
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Using Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA) satellite observations and ground‐based observations by the THEMIS all‐sky imagers (ASIs) and SuperDARN radars, we determine how the equatorward boundary locations of ring current ions and plasma sheet electrons at pre‐midnight relate to occurrence of strong thermal emission velocity enhancement (STEVE) and intense subauroral ion drifts (SAID) during substorms. We found that the STEVE events are associated with a sharper gradient of electron precipitating flux, lower precipitating ion flux, and a narrower (<1°) latitudinal gap between the equatorward boundaries of trapped ring current ions and precipitating plasma sheet electrons and narrower region‐2 field‐aligned currents (FACs) than for the non‐STEVE events. The narrow gap of the particle boundaries contains intense SAID, higher upflow velocity, lower trough density, and slightly higher electron temperature than those for the non‐STEVE events. The non‐STEVE substorms have much wider gaps between the trapped ions and precipitating electrons, and subauroral polarization streams (SAPS) do not show intense SAID. These results indicate that subauroral flows and downward FACs for the STEVE events can only flow within the latitudinally narrow subauroral low‐conductance region between the ion and electron boundaries, resulting in intense SAID and heating. During the non‐STEVE events, the SAPS flows can flow in the latitudinally wide region without forming intense SAID.more » « less
-
Abstract “Polar” substorms are identified as substorm‐like disturbances that are exclusively observed at high geomagnetic latitudes (>70° MLAT) and are absent at lower latitudes. Although “polar” substorms typically occur during periods of quiet geomagnetic activity, it is still unclear whether they can develop under extremely quiet conditions when geoeffective space weather parameters are exceptionally low. Utilizing data from the IMAGE network across the Svalbard archipelago within the longitudinal sector of (∼108–114 Mlong), we examined 92 “extremely quiet geomagnetic” intervals from 2010 to 2020, which were associated with intervals of extremely slow solar wind (ESSWs,V < 300 km/s). We discovered that “polar” substorms can occur during ESSWs, but only with the presence of a negative Bz component. A total of 32 such events were identified from 17 ESSW intervals (∼19% of all ESSW intervals). We found that “polar” substorms during ESSWs display the primary characteristics of ordinary substorms, including the accompaniment of Pi1B geomagnetic pulsations, positive subauroral or mid‐latitude magnetic bays, a poleward shift of the westward electrojet, and auroral activity during their expansion phase. Additionally, it was found that the majority of “polar” substorm events during ESSWs (∼82%) were isolated substorms, developing solely in the pre‐midnight sector without disturbances in other longitudinal sectors. Several “polar” substorm events have been examined in detail.more » « less
-
Abstract Although Strong Thermal Emission Velocity Enhancement (STEVE) and subauroral ion drifts (SAID) are often considered in the context of geomagnetically disturbed times, we found that STEVE and SAID can occur even during quiet times. Quiet‐time STEVE has the same properties as substorm‐time STEVE, including its purple/mauve color and occurrence near the equatorward boundary of the pre‐midnight auroral oval. Quiet‐time STEVE and SAID emerged during a non‐substorm auroral intensification at or near the poleward boundary of the auroral oval followed by a streamer. Quiet‐time STEVE only lasted a few minutes but can reappear multiple times, and its latitude was much higher than substorm‐time STEVE due to the contracted auroral oval. The THEMIS satellites in the plasma sheet detected dipolarization fronts and fast flows associated with the auroral intensification, indicating that the transient energy release in the magnetotail was the source of quiet‐time STEVE and SAID. Particle injection was weaker and electron temperature was lower than the events without quiet‐time STEVE. The plasmapause extended beyond the geosynchronous orbit, and the ring current and tail current were weak. The interplanetary magnetic field (IMF)Bzwas close to zero, while the IMFBxwas dominant. We suggest that the small energy release in the quiet magnetosphere can significantly impact the flow and field‐aligned current system.more » « less
-
Abstract Enhancement of currents in Earth's ionosphere adversely impacts systems and technologies, and one example of extreme enhancement is supersubstorms. Despite the name, whether a supersubstorm is a substorm remains an open question, because studies suggest that unlike substorms, supersubstorms sometimes affect all local times including the dayside. The spectacular May 2024 storm contains signatures of two supersubstorms that occurred successively in time with similar magnitude and duration, and we explore the nature of them by examining the morphology of the auroral electrojet, the corresponding disturbances in the magnetosphere, and the solar wind driving conditions. The results show that the two events exhibit distinctly different features. The first event was characterized by a locally intensified electrojet followed by a rapid expansion in latitude and local time. Auroral observations showed poleward expansion of auroras (or aurorae), and geosynchronous observations showed thickening of the plasma sheet, magnetic field dipolarization, and energetic particle injections. The second event was characterized by an instantaneous intensification of the electrojet over broad latitude and local time. Auroras did not expand but brightened simultaneously across the sky. Radar and LEO observations showed enhancement of the ionospheric electric field. Therefore, the first event is a substorm, whereas the second event is enhancement of general magnetospheric convection driven by a solar wind pressure increase. These results illustrate that the so‐called supersubstorms have more than one type of driver, and that internal instability in the magnetotail and external driving of the solar wind are equally important in driving extreme auroral electrojet activity.more » « less
An official website of the United States government
