skip to main content

Search for: All records

Award ID contains: 2026516

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Laparoscopic surgery has a notably high learning curve, hindering typical approaches to training. Due to unique challenges that are not present in open surgery (the hinge effect, small field of view (FoV), lack of depth perception, and small workspace), a surgical resident may be delayed in participating in laparoscopic surgery until later in residency. Having a narrow window to complete highly specialized training can lead to graduates feeling under-prepared for solo practice. Additionally, delayed introduction may expose trainees to fewer than 200 laparoscopic cases. Therefore, there is a need for surgical residents to increase both their caseload and training window without compromising patient safety. This project aims to develop and test a proof-of-concept prototype that uses granular jamming technology to controllably vary the force required to move a laparoscopic tool. By increasing tool resistance, the device helps prevents accidental injury to important nearby anatomical structures such as urinary tract, vasculature, and/or bowel. Increasing the safety of laparoscopic surgery would allow residents to begin their training earlier, gaining exposure and confidence. A device to adjust tool resistance has benefits to the experienced surgeon as well – surgeries require continuous tool adjustment and tension, resulting in fatigue. Increasing tool resistance canmore »assist surgeons in situations requiring continuous tension and can also provide safety against sudden movements. This investigational device was prototyped using SolidWorks CAD software, then 3D printed and assessed with a laparoscopic box trainer.

    « less
  2. Telehealth technologies play a vital role in delivering quality healthcare to patients regardless of geographic location and health status. Use of telehealth peripherals allow providers a more accurate method of collecting health assessment data from the patient and delivering a more confident and accurate diagnosis, saving not only time and money but creating positive patient outcomes. Advanced Practice Nursing (APN) students should be confident in their ability to diagnose and treat patients through a virtual environment. This pilot simulation was completed to help examine how APN students interacted in a simulation-based education (SBE) experience with and without peripherals, funded by the National Science Foundation’s Future of Work at the Human-Technology Frontier (FW-HTF) program. The SBE experience was created and deployed using the INACSL Healthcare Simulation Standards of Best PracticesTM and vetted by a simulation expert. APN students (N = 24), in their first assessment course, were randomly selected to be either a patient (n = 12) or provider (n = 12) in a telehealth simulation. Student dyads (patient/provider) were randomly placed to complete a scenario with (n = 6 dyads) or without (n = 6 dyads) the use of a peripheral. Students (providers and patients) who completed the SBE experiencemore »had an increased confidence level both with and without the use of peripherals. Students evaluated the simulation via the Simulation Effectiveness Tool-Modified (SET-M), and scored their perception of the simulation on a 1 to 5 point Likert Scale. The highest scoring areas were perceived support of learning by the faculty (M=4.6), feeling challenged in decision-making skills (M=4.4), and a better understanding of didactic material (M=4.3). The lowest scoring area was feeling more confident in decision making (M=3.9). We also recorded students’ facial expressions during the task to determine a probability score (0- 100) for expressed basic emotions, and results revealed that students had the highest scores for joy (M = 8.47) and surprise (M = 4.34), followed by disgust (M = 1.43), fear (M = .76), and contempt (M = .64); and had the lowest scores of anger (M = .44) and sadness (M = .36). Students were also asked to complete a reflection assignment as part of the SBE experience. Students reported feeling nervous at the beginning of the SBE experience, but acknowledged feeling better as the SBE experience unfolded. Based on findings from this pilot study, implications point towards the effectiveness of including simulations for nurse practitioner students to increase their confidence in performing telehealth visits and engaging in decision making. For the students, understanding that patients may be just as nervous during telehealth visits was one of the main takeaways from the experience, as well as remembering to reassure the patient and how to ask the patient to work the telehealth equipment. Therefore, providing students opportunities to practice these skills will help increase their confidence, boost their self- and emotion regulation, and improve their decision-making skills in telehealth scenarios.« less
  3. Background: Lack of feasible palpation display for primary diagnosis of a tumor without any need of physician to patient physical contact has been reported as one of the major concerns. To further explore this area, we developed a novel palpation device consisting of a uniquely designed nodule mechanism (based on optimizing nodule top and bottom hemisphere wall thickness and manipulating granular jamming method) that can vary stiffness while maintaining the shape of the same nodule display, for which current devices are not capable of in terms of aping a tumor. Methods: This paper evaluates the manufacturing approach of the nodule, exploring several iterations of the nodule prototype. Experiments were performed on nodule prototypes of varying wall thicknesses in order to evaluate its effect on stiffness and deformation. Results and Conclusions: Experimental results showed that nodule top and bottom wall thickness had a significant effect on the stiffness and deformation of the nodule. The higher the thickness of the top hemisphere and the lower the thickness of the bottom hemisphere, the greater the stiffness the nodule can achieve. Similarly, the display shape of the nodule can be maintained with minimal or no deformation if the nodule top hemisphere thickness is optimallymore »higher than bottom hemisphere thickness.« less