skip to main content


Search for: All records

Award ID contains: 2027210

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A chain of magnetometers has been placed in Antarctica for comparisons with magnetic field measurements taken in the Northern Hemisphere. The locations were chosen to be on magnetic field lines that connect to magnetometers on the western coast of Greenland, despite the difficulty of reaching and working at such remote locations. We report on some basic comparisons of the similarities and differences in the conjugate measurements. Our results presented here confirm that the conjugate sites do have very similar (symmetric) magnetic perturbations in a handful of cases, as expected. Sign reversals are required for two components in order to obtain this agreement, which is not commonly known. More frequently, a strongYcomponent of the Interplanetary Magnetic Field (IMF) breaks the symmetry, as well as the unequal conductivities in the opposite hemispheres, as shown in two examples. In one event the IMFYcomponent reversed signs twice within 2 hours, while the magnetometer chains were approaching local noon. This switch provided an opportunity to observe the effects at the conjugate locations and to measure time lags. It was found that the magnetic fields at the most poleward sites started to respond to the sudden IMF reversals 20 min after the IMF reaches the bow shock, a measure of the time it takes for the electromagnetic signal to travel to the magnetopause, and then along magnetic field lines to the polar ionospheres. An additional 9–14 min is required for the magnetic perturbations to complete their transition.

     
    more » « less
  2. Abstract

    On 04 December 2021, a total solar eclipse occurred over west Antarctica. Nearly an hour beforehand, a geomagnetic substorm onset was observed in the northern hemisphere. Eclipses are suggested to influence magnetosphere‐ionosphere (MI) coupling dynamics by altering the conductivity structure of the ionosphere by reducing photoionization. This sudden and dramatic change in conductivity is not only likely to alter global MI coupling, but it may also introduce a variety of localized instabilities that appear in both hemispheres. Global navigation satellite system (GNSS) based observations of the total electron content (TEC) in the southern high latitude ionosphere during the December 2021 eclipse show signs of wave activity coincident with the eclipse peak totality. Ground magnetic observations in the same region show similar activity, and our analysis suggest that these observations are due to an “eclipse effect” rather than the prior substorm. We present the first multi‐point interhemispheric study of a total south polar eclipse with local TEC observational context in support of this conclusion.

     
    more » « less
  3. Abstract

    Surface waves on Earth's magnetopause have a controlling effect upon global magnetospheric dynamics. Since spacecraft provide sparse in situ observation points, remote sensing these modes using ground‐based instruments in the polar regions is desirable. However, many open conceptual questions on the expected signatures remain. Therefore, we provide predictions of key qualitative features expected in auroral, ionospheric, and ground magnetic observations through both magnetohydrodynamic theory and a global coupled magnetosphere‐ionosphere simulation of a magnetopause surface eigenmode. These show monochromatic oscillatory field‐aligned currents (FACs), due to both the surface mode and its non‐resonant Alfvén coupling, are present throughout the magnetosphere. The currents peak in amplitude at the equatorward edge of the magnetopause boundary layer, not the open‐closed boundary as previously thought. They also exhibit slow poleward phase motion rather than being purely evanescent. We suggest the upward FAC perturbations may result in periodic auroral brightenings. In the ionosphere, convection vortices circulate the poleward moving FAC structures. Finally, surface mode signals are predicted in the ground magnetic field, with ionospheric Hall currents rotating perturbations by approximately (but not exactly) 90° compared to the magnetosphere. Thus typical dayside magnetopause surface modes should be strongest in the East‐West ground magnetic field component. Overall, all ground‐based signatures of the magnetopause surface mode are predicted to have the same frequency acrossL‐shells, amplitudes that maximize near the magnetopause's equatorward edge, and larger latitudinal scales than for field line resonance. Implications in terms of ionospheric Joule heating and geomagnetically induced currents are discussed.

     
    more » « less
  4. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

     
    more » « less
  5. Abstract

    Nearly all studies of impulsive geomagnetic disturbances (GMDs, also known as magnetic perturbation events MPEs) that can produce dangerous geomagnetically induced currents (GICs) have used data from the northern hemisphere. In this study, we investigated GMD occurrences during the first 6 months of 2016 at four magnetically conjugate high latitude station pairs using data from the Greenland West Coast magnetometer chain and from Antarctic stations in the conjugate AAL‐PIP magnetometer chain. Events for statistical analysis and four case studies were selected from Greenland/AAL‐PIP data by detecting the presence of >6 nT/s derivatives of any component of the magnetic field at any of the station pairs. For case studies, these chains were supplemented by data from the BAS‐LPM chain in Antarctica as well as Pangnirtung and South Pole in order to extend longitudinal coverage to the west. Amplitude comparisons between hemispheres showed (a) a seasonal dependence (larger in the winter hemisphere), and (b) a dependence on the sign of theBycomponent of the interplanetary magnetic field (IMF): GMDs were larger in the north (south) when IMFBywas >0 (<0). A majority of events occurred nearly simultaneously (to within ±3 min) independent of the sign ofByas long as |By| ≤ 2 |Bz|. As has been found in earlier studies, IMFBzwas <0 prior to most events. When IMF data from Geotail, Themis B, and/or Themis C in the near‐Earth solar wind were used to supplement the time‐shifted OMNI IMF data, the consistency of these IMF orientations was improved.

     
    more » « less
  6. Abstract

    GPS total electron content (TEC) measurements were used to investigate high‐m ultralow frequency (ULF) waves during the recovery phase of a geomagnetic storm. ULF wave signals in TEC data show high coherence and significant common power in the wavelet coherence and cross wavelet transform analyses with magnetic field radial component data from GOES‐15. They did not cause significant ionospheric scintillation or ground magnetic signatures due to ionospheric screening effects. An automatic identification procedure is developed to identify ULF wave signature in TEC data from 10 GPS receivers on January 25, 2016. The waves were mainly distributed on the dayside and post dusk sector from ∼64° to ∼71° magnetic latitude. This is the first time that the large‐scale 2D spatial structure and temporal evolution of high‐m ULF waves are revealed, which demonstrates TEC measurements as an effective high‐m ULF wave remote sensing tool.

     
    more » « less
  7. Free, publicly-accessible full text available January 1, 2025
  8. Free, publicly-accessible full text available June 1, 2024
  9. null (Ed.)
    Abstract Ionospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). However, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite ionospheric monitoring has been undertaken for decades, these irregularities in multiple spatial and temporal scales are still not fully understood. This paper reviews Virginia Tech’s recent studies on multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. First, the relevant background of ionospheric irregularities and their impact on GNSS signals is reviewed. Next, three topics of ground-based observations of ionospheric irregularities for which GNSS and other ground-based techniques are used simultaneously are reviewed. Both passive and active measurements in high-latitude regions are covered. Modelling and observations in mid-latitude regions are considered as well. Emphasis is placed on the increased capability of assessing the multi-scale nature of ionospheric irregularities using other traditional techniques (e.g., radar, magnetometer, high frequency receivers) as well as GNSS observations (e.g., Total-Electron-Content or TEC, scintillation). Besides ground-based observations, recent advances in GNSS space-based ionospheric measurements are briefly reviewed. Finally, a new space-based ionospheric observation technique using GNSS-based spacecraft formation flying and a differential TEC method is demonstrated using the newly developed Virginia Tech Formation Flying Testbed (VTFFTB). Based on multi-constellation multi-band GNSS, the VTFFTB has been developed into a hardware-in-the-loop simulation testbed with external high-fidelity global ionospheric model(s) for 3-satellite formation flying, which can potentially be used for new multi-scale ionospheric measurement mission design. 
    more » « less
  10. null (Ed.)