skip to main content


Title: Characterization of High‐m ULF Wave Signatures in GPS TEC Data
Abstract

GPS total electron content (TEC) measurements were used to investigate high‐m ultralow frequency (ULF) waves during the recovery phase of a geomagnetic storm. ULF wave signals in TEC data show high coherence and significant common power in the wavelet coherence and cross wavelet transform analyses with magnetic field radial component data from GOES‐15. They did not cause significant ionospheric scintillation or ground magnetic signatures due to ionospheric screening effects. An automatic identification procedure is developed to identify ULF wave signature in TEC data from 10 GPS receivers on January 25, 2016. The waves were mainly distributed on the dayside and post dusk sector from ∼64° to ∼71° magnetic latitude. This is the first time that the large‐scale 2D spatial structure and temporal evolution of high‐m ULF waves are revealed, which demonstrates TEC measurements as an effective high‐m ULF wave remote sensing tool.

 
more » « less
Award ID(s):
1935110 2027210
NSF-PAR ID:
10367489
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground‐based Global Navigation Satellite System total electron content (TEC), Swarm in situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (a) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ∼45 min after the eruption, comprising of several cascading TEC decreases and quasi‐periodic oscillations. Such a deep local plasma hole was also observed by space‐borne in situ measurements, with an estimated horizontal radius of 10–15° and persisted for more than 10 hr in ICON‐IVM ion density profiles until local sunrise. (b) Pronounced post‐volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia‐Oceania area after the arrival of volcano‐induced waves; these caused aNedecrease of 2–3 orders of magnitude at Swarm/ICON altitude between 450 and 575 km, covered wide longitudinal ranges of more than 140°, and lasted around 12 hr. (c) Various acoustic‐gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock‐acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb‐wave mode of ∼315 m/s; the large‐scale EPBs could be seeded by acoustic‐gravity resonance and coupling to less‐damped Lamb waves, under a favorable condition of volcano‐induced enhancement of dusktime plasma upward E×B drift and postsunset rise of the equatorial ionospheric F‐layer.

     
    more » « less
  2. null (Ed.)
    Variations of vertical atmospheric electric field E z have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, E z . Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in E z gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH 0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of E z well exceeding the atmospheric potential gradient. We have examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed E z disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH 0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak E z response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations. 
    more » « less
  3. Abstract

    Major earthquakes (>∼6.5 Mw) can generate observable waves which propagate not only through the Earth but also through the Earth's ionosphere. These traveling ionospheric disturbances can be observed using multifrequency GPS receivers to measure the ensuing perturbations in the Total Electron Content of the ionosphere. Assisted by a statistical approach we developed to indicate the occurrence of a significant TEC perturbation from the normal background behavior, we detect a traveling ionospheric disturbance generated by the 2016 7.8MwKaikoura earthquake occurring in New Zealand on the 13th of November. The disturbance was detected ∼8 min after the earthquake, propagating toward the equator at ∼1 km/s with a peak‐to‐peak amplitude of ∼0.22 Total Electron Content units. The coseismic waveform exhibits complex structure unlike that of the expected N‐wave for coseismic ionospheric disturbances, with observations of oscillations with 4‐min periodicity and of two N‐waves. This observed complexity in the ionosphere likely reflects the impact of the complex, multifault structure of the earthquake.

     
    more » « less
  4. Abstract

    During geomagnetically active times, the enhanced ion convection and particle precipitation at high latitudes cause substantial disturbances in the ionosphere and thermosphere. Large‐scale traveling ionospheric disturbances (LSTIDs) were identified from Global Positioning System (GPS) total electron content (TEC) measurements from 06:30 to 08:30 UT on 26 March 2014 as a result of southward turning of the interplanetary magnetic field (IMF) Bzand enhanced particle precipitation during a substorm. The comparison of LSTIDs from the global ionosphere‐thermosphere model (GITM) simulations with GPS TEC measurements shows a general agreement. Further theoretical analyses with GITM were conducted to sperate the influence of ion convection and particle precipitation on the total Joule heating as well as on the resulting large‐scale traveling atmospheric disturbances (LSTADs) and LSTIDs. It was found that ion convection and particle precipitation have comparable contributions to the total Joule heating, although the changes of height‐integrated Joule heating due to these two forcing terms may display different distributions. In addition, the magnitudes of neutral density and TEC perturbations due to these two forcing terms were found to be comparable. Using the total energy flux versus time derived from all‐sky imager measurements for this event to drive GITM improves the data‐model comparison of LSTIDs. However, data‐model discrepancies still exist in the timing of LSTIDs and the magnitude of TEC perturbations, which calls for further investigation and realistic event‐specific specifications.

     
    more » « less
  5. Abstract

    We propose a novel approach to produce regional maps of small‐scale scintillation‐causing irregularities using a single satellite. To construct the maps, we employ several ionospheric GPS indices, including total electron content, high‐resolution ROTI, and S4, calculated from the Swarm Echo GPS Attitude, Positioning, and Profiling Experiment Occultation (GAP‐O) receiver with its antenna pointed upward. GAP‐O's high‐sample‐rate observations enable irregularities as small as 320 m to be resolved. We present two case studies in which we compare the maps with in situ measurements of irregularities and simultaneous vertical TEC maps obtained from the ground. In situ measurements of net current onto the external surface of the Imaging and Rapid‐scanning Ion Mass Spectrometer sensor on board Swarm Echo were utilized to quantify plasma density fluctuations. Then, we apply the method to synthetic data to illustrate the efficacy of the method. Modeling results show that the irregularity maps can determine the horizontal geo‐locations of small‐scale irregularities, though with significant uncertainties in the cross‐track direction (east‐west). As Swarm Echo traverses different altitudes, these maps provide additional information on the altitudinal distribution of plasma fluctuations. This technique facilitates a better understanding of the morphology of scintillation‐causing irregularities, which are challenging to map from ground‐based receiver arrays alone.

     
    more » « less