skip to main content


Search for: All records

Award ID contains: 2027369

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    New York City (NYC) has been one of the hotspots of the COVID‐19 pandemic in the United States. By the end of April 2020, close to 165 000 cases and 13 000 deaths were reported in the city with considerable variability across the city's ZIP codes.

    Objectives

    In this study, we examine: (a) the extent to which the variability in ZIP code‐level case positivity can be explained by aggregate markers of socioeconomic status (SES) and daily change in mobility; and (b) the extent to which daily change in mobility independently predicts case positivity.

    Methods

    COVID‐19 case positivity by ZIP code was modeled using multivariable linear regression with generalized estimating equations to account for within‐ZIP clustering. Daily case positivity was obtained from NYC Department of Health and Mental Hygiene and measures of SES were based on data from the American Community Survey. Changes in human mobility were estimated using anonymized aggregated mobile phone location systems.

    Results

    Our analysis indicates that the socioeconomic markers considered together explained 56% of the variability in case positivity through April 1 and their explanatory power decreased to 18% by April 30. Changes in mobility during this time period are not likely to be acting as a mediator of the relationship between ZIP‐level SES and case positivity. During the middle of April, increases in mobility were independently associated with decreased case positivity.

    Conclusions

    Together, these findings present evidence that heterogeneity in COVID‐19 case positivity during NYC’s spring outbreak was largely driven by residents’ SES.

     
    more » « less
  2. Abstract

    To support COVID-19 pandemic planning, we develop a model-inference system to estimate epidemiological properties of new SARS-CoV-2 variants of concern using case and mortality data while accounting for under-ascertainment, disease seasonality, non-pharmaceutical interventions, and mass-vaccination. Applying this system to study three variants of concern, we estimate that B.1.1.7 has a 46.6% (95% CI: 32.3–54.6%) transmissibility increase but nominal immune escape from protection induced by prior wild-type infection; B.1.351 has a 32.4% (95% CI: 14.6–48.0%) transmissibility increase and 61.3% (95% CI: 42.6–85.8%) immune escape; and P.1 has a 43.3% (95% CI: 30.3–65.3%) transmissibility increase and 52.5% (95% CI: 0–75.8%) immune escape. Model simulations indicate that B.1.351 and P.1 could outcompete B.1.1.7 and lead to increased infections. Our findings highlight the importance of preventing the spread of variants of concern, via continued preventive measures, prompt mass-vaccination, continued vaccine efficacy monitoring, and possible updating of vaccine formulations to ensure high efficacy.

     
    more » « less
  3. Abstract

    Improved understanding of the effects of meteorological conditions on the transmission of SARS-CoV-2, the causative agent for COVID-19 disease, is needed. Here, we estimate the relationship between air temperature, specific humidity, and ultraviolet radiation and SARS-CoV-2 transmission in 2669 U.S. counties with abundant reported cases from March 15 to December 31, 2020. Specifically, we quantify the associations of daily mean temperature, specific humidity, and ultraviolet radiation with daily estimates of the SARS-CoV-2 reproduction number (Rt) and calculate the fraction ofRtattributable to these meteorological conditions. Lower air temperature (within the 20–40 °C range), lower specific humidity, and lower ultraviolet radiation were significantly associated with increasedRt. The fraction ofRtattributable to temperature, specific humidity, and ultraviolet radiation were 3.73% (95% empirical confidence interval [eCI]: 3.66–3.76%), 9.35% (95% eCI: 9.27–9.39%), and 4.44% (95% eCI: 4.38–4.47%), respectively. In total, 17.5% ofRtwas attributable to meteorological factors. The fractions attributable to meteorological factors generally were higher in northern counties than in southern counties. Our findings indicate that cold and dry weather and low levels of ultraviolet radiation are moderately associated with increased SARS-CoV-2 transmissibility, with humidity playing the largest role.

     
    more » « less
  4. Abstract

    The 2020 Atlantic hurricane season was extremely active and included, as of early November, six hurricanes that made landfall in the United States during the global coronavirus disease 2019 (COVID‐19) pandemic. Such an event would necessitate a large‐scale evacuation, with implications for the trajectory of the pandemic. Here we model how a hypothetical hurricane evacuation from four counties in southeast Florida would affect COVID‐19 case levels. We find that hurricane evacuation increases the total number of COVID‐19 cases in both origin and destination locations; however, if transmission rates in destination counties can be kept from rising during evacuation, excess evacuation‐induced case numbers can be minimized by directing evacuees to counties experiencing lower COVID‐19 transmission rates. Ultimately, the number of excess COVID‐19 cases produced by the evacuation depends on the ability of destination counties to meet evacuee needs while minimizing virus exposure through public health directives. These results are relevant to disease transmission during evacuations stemming from additional climate‐related hazards such as wildfires and floods.

     
    more » « less
  5. null (Ed.)
  6. Turner, Richard (Ed.)
    Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residents (95% CI: 37–49; p < 0.001) with a 1% increase in the prevalence of chronic kidney disease and by 39 deaths per thousand (95% CI: 34–44; p < 0.001) with 1% increase in population living in nursing homes. SAR models using multiple health/socioeconomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjusting for case rates. R 2 was found to be not sensitive to the choice of SAR model form. Study limitations include the use of mortality rates that are not age standardized, a spatial adjacency matrix that does not capture human flows among counties, and insufficient accounting for interaction among predictors. Conclusions Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population health/socioeconomic indicators account for a considerable variability in county-level mortality. In the context of vaccine rollout in the US and globally, national and subnational estimates of burden of disease could inform optimal geographical allocation of vaccines. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
    As COVID-19 continues to pose significant public health threats, quantifying the effectiveness of different public health interventions is crucial to inform intervention strategies. Using detailed epidemiological and mobility data available for New York City and comprehensive modelling accounting for under-detection, we reconstruct the COVID-19 transmission dynamics therein during the 2020 spring pandemic wave and estimate the effectiveness of two major non-pharmaceutical interventions—lockdown-like measures that reduce contact rates and universal masking. Lockdown-like measures were associated with greater than 50% transmission reduction for all age groups. Universal masking was associated with an approximately 7% transmission reduction overall and up to 20% reduction for 65+ year olds during the first month of implementation. This result suggests that face covering can substantially reduce transmission when lockdown-like measures are lifted but by itself may be insufficient to control SARS-CoV-2 transmission. Overall, findings support the need to implement multiple interventions simultaneously to effectively mitigate COVID-19 spread before the majority of population can be protected through mass-vaccination. 
    more » « less
  10. Sills, Jennifer (Ed.)