skip to main content


Search for: All records

Award ID contains: 2027523

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT Flying snakes flatten their body to form a roughly triangular cross-sectional shape, enabling lift production and horizontal acceleration. While gliding, they also assume an S-shaped posture, which could promote aerodynamic interactions between the fore and the aft body. Such interactions have been studied experimentally; however, very coarse models of the snake's cross-sectional shape were used, and the effects were measured only for the downstream model. In this study, the aerodynamic interactions resulting from the snake's posture were approximated using two-dimensional anatomically accurate airfoils positioned in tandem to mimic the snake's geometry during flight. Load cells were used to measure the lift and drag forces, and flow field data were obtained using digital particle image velocimetry (DPIV). The results showed a strong dependence of the aerodynamic performance on the tandem arrangement, with the lift coefficients being generally more influenced than the drag coefficients. Flow field data revealed that the tandem arrangement modified the separated flow and the wake size, and enhanced the lift in cases in which the wake vortices formed closer to the models, producing suction on the dorsal surface. The downforce created by the flow separation from the ventral surface of the models at 0 deg angle of attack was another significant factor contributing to lift production. A number of cases showing large variations of aerodynamic performance included configurations close to the most probable posture of airborne flying snakes, suggesting that small postural variations could be used to control the glide trajectory. 
    more » « less
  2. null (Ed.)
    Maple trees (genus Acer) accomplish the task of distributing objects to a wide area by producing seeds, known as samaras, which are carried by the wind as they autorotate and slowly descend to the ground. With the goal of supporting engineering applications, such as gathering environmental data over a broad area, we developed 3D-printed artificial samaras. Here, we compare the behavior of both natural and artificial samaras in both still-air laboratory experiments and wind dispersal experiments in the field. We show that the artificial samaras are able to replicate (within one standard deviation) the behavior of natural samaras in a lab setting. We further use the notion of windage to compare dispersal behavior, and show that the natural samara has the highest mean windage, corresponding to the longest flights during both high wind and low wind experimental trials. This study demonstrated a bioinspired design for the dispersed deployment of sensors and provides a better understanding of wind-dispersal of both natural and artificial samaras. 
    more » « less