skip to main content


This content will become publicly available on August 8, 2024

Title: Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots
Abstract Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.  more » « less
Award ID(s):
1941933 2218382 1817334 2310691 1806833
NSF-PAR ID:
10439524
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
18
Issue:
5
ISSN:
1748-3182
Page Range / eLocation ID:
051001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Springtails (Collembola) have been traditionally portrayed as explosive jumpers with incipient directional takeoff and uncontrolled landing. However, for these collembolans that live near the water, such skills are crucial for evading a host of voracious aquatic and terrestrial predators. We discover that semiaquatic springtails, Isotomurus retardatus , can perform directional jumps, rapid aerial righting, and near-perfect landing on the water surface. They achieve these locomotive controls by adjusting their body attitude and impulse during takeoff, deforming their body in midair, and exploiting the hydrophilicity of their ventral tube, known as the collophore. Experiments and mathematical modeling indicate that directional-impulse control during takeoff is driven by the collophore’s adhesion force, the body angle, and the stroke duration produced by their jumping organ, the furcula. In midair, springtails curve their bodies to form a U-shape pose, which leverages aerodynamic forces to right themselves in less than ~20 ms, the fastest ever measured in animals. A stable equilibrium is facilitated by the water adhered to the collophore. Aerial righting was confirmed by placing springtails in a vertical wind tunnel and through physical models. Due to these aerial responses, springtails land on their ventral side ~85% of the time while anchoring via the collophore on the water surface to avoid bouncing. We validated the springtail biophysical principles in a bioinspired jumping robot that reduces in-flight rotation and lands upright ~75% of the time. Thus, contrary to common belief, these wingless hexapods can jump, skydive, and land with outstanding control that can be fundamental for survival. 
    more » « less
  2. The rising global trend to reduce dependence on fossil fuels has provided significant motivation toward the development of alternative energy conversion methods and new technologies to improve their efficiency. Recently, oscillating energy harvesters have shown promise as highly efficient and scalable turbines, which can be implemented in areas where traditional energy extraction and conversion are either unfeasible or cost prohibitive. Although such devices are quickly gaining popularity, there remain a number of hurdles in the understanding of their underlying fluid dynamics phenomena. The ability to achieve high efficiency power output from oscillating airfoil energy harvesters requires exploitation of the complexities of the event of dynamic stall. During dynamic stall, the oncoming flow separates at the leading edge of the airfoil to form leading ledge vortex (LEV) structures. While it is well known that LEVs play a significant role in aerodynamic force generation in unsteady animal flight (e.g. insects and birds), there is still a need to further understand their spatiotemporal evolution in order to design more effective energy harvesting enhancement mechanisms. In this work, we conduct extensive experimental investigations to shed-light on the flow physics of a heaving and pitching airfoil energy harvester operating at reduced frequencies of k = fc=U1 = 0.06-0.18, pitching amplitude of 0 = 75 and heaving amplitude of h0 = 0:6c. The experimental work involves the use of two-component particle image velocimetry (PIV) measurements conducted in a wind tunnel facility at Oregon State University. Velocity fields obtained from the PIV measurements are analyzed qualitatively and quantitatively to provide a description of the dynamics of LEVs and other flow structures that may be present during dynamic stall. Due to the difficulties of accurately measuring aerodynamic forces in highly unsteady flows in wind tunnels, a reduced-order model based on the vortex-impulse theory is proposed for estimating the aerodynamic loadings and power output using flow field data. The reduced-order model is shown to be dominated by two terms that have a clear physical interpretation: (i) the time rate of change of the impulse of vortical structures and (ii) the Kutta-Joukowski force which indirectly represents the history effect of vortex shedding in the far wake. Furthermore, the effects of a bio-inspired flow control mechanism based on deforming airfoil surfaces on the flow dynamics and energy harvesting performance are investigated. The results show that the aerodynamic loadings, and hence power output, are highly dependent on the formation, growth rate, trajectory and detachment of the LEV. It is shown that the energy harvesting efficiency increases with increasing reduced frequency, peaking at 25% when k = 0.14, agreeing very well with published numerical results. At this optimal reduced frequency, the time scales of the LEV evolution and airfoil kinematics are matched, resulting in highly correlated aerodynamic load generation and airfoil motion. When operating at k > 0:14, it is shown that the aerodynamic moment and airfoil pitching motion become negatively correlated and as a result, the energy harvesting performance is deteriorated. Furthermore, by using a deforming airfoil surface at the leading and trailing edges, the peak energy harvesting efficiency is shown to increase by approximately 17% and 25% relative to the rigid airfoil, respectively. The performance enhancement is associated with enhanced aerodynamic forces for both the deforming leading and trailing edges. In addition, The deforming trailing edge airfoil is shown to enhance the correlation between the aerodynamic moment and pitching motion at higher reduced frequencies, resulting in a peak efficiency at k = 0:18 as opposed to k = 0:14 for the rigid airfoil. 
    more » « less
  3. We study analytically the dynamic response of membrane aerofoils subject to arbitrary, small-amplitude chord motions and transverse gusts in a two-dimensional inviscid incompressible flow. The theoretical model assumes linear deformations of an extensible membrane under constant tension, which are coupled aeroelastically to external aerodynamic loads using unsteady thin aerofoil theory. The structural and aerodynamic membrane responses are investigated for harmonic heave oscillations, an instantaneous change in angle of attack, sinusoidal transverse gusts and a sharp-edged gust. The unsteady lift responses for these scenarios produce aeroelastic extensions to the Theodorsen, Wagner, Sears and Küssner functions, respectively, for a membrane aerofoil. These extensions incorporate for the first time membrane fluid–structure interaction into the expressions for the unsteady lift response of a flexible aerofoil. The indicial responses to step changes in the angle of attack or gust profile are characterised by a slower lift response in short times relative to the classical rigid-plate response, while achieving a significantly higher asymptotic lift at long times due to aeroelastic camber. The unsteady lift for harmonic gusts or heaving motions follows closely the rigid plate lift responses at low reduced frequencies but with a reduced lift amplitude and greater phase lag. However, as the reduced frequency approaches the resonance of the fluid-loaded membrane, the lift response amplitude increases abruptly and is followed by a sharp decrease. This behaviour reveals a frequency region, controlled by the membrane tension coefficient, for which membrane aerofoils could possess substantial aerodynamic benefits over rigid aerofoils in unsteady flow conditions. 
    more » « less
  4. Flying snakes are the only snakes on Earth capable of aerial gliding, taking advantage of fluid dynamic principles to leap from point to point among the trees. During their gliding, the locomotion of aerial undulation is observed. We hypothesize that this locomotion and its associated unsteady vortex dynamics are critical to their aerodynamic performance. However, there is a lack of detailed three-dimensional flow field information around the snake body in gliding due to the difficulties in experimental flow visualizations of live animals. In this study, a computation fluid dynamics (CFD) study has been conducted to study the fluid dynamics of a snake-like gliding. A mathematical equation describing the horizontal undulation motion was applied for constructing snake-like 3D computational models and a series of flow simulations were conducted. An immersed-boundary-method (IBM)-based direct numerical simulation (DNS) flow solver along with adaptive mesh refinement (AMR) was used in the simulation. Specifically, different head positions, corresponding to different horizontal wave shapes and their effect on aerodynamic performance, flow field and wake structures behind the body will be studied. In addition, the dynamic undulating motion is introduced in the model and a CFD simulation is also conducted. Results from this study are expected to bring a step stone to understanding snake-inspired locomotion. 
    more » « less
  5. null (Ed.)
    Synopsis Many flying insects utilize a membranous structure for flight, which is known as a “wing.” However, some spiders use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information on the types and physical properties of spiders’ ballooning silks. According to the data, a crab spider weighing 20 mg spins 50–60 ballooning silks simultaneously, which are about 200 nm thick and 3.22 m long for their flight. Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a high-slender body). (1) The filament-like structure is materially efficient geometry to produce (or harvest, in the case of passive flight) fluid-dynamic force in a low Reynolds number flow regime. (2) Multiple nanoscale fibers are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize their drag on the ballooning fibers using the same amount of silk dope. (3) The mean thickness of fibers, 200 nm, is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes thinner than 100 nm. 
    more » « less