skip to main content


Search for: All records

Award ID contains: 2027783

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Data-driven machine learning has become ubiquitous. A marketplace for machine learning models connects data owners and model buyers, and can dramatically facilitate data-driven machine learning applications. In this paper, we take a formal data marketplace perspective and propose the first en D -to-end mod e l m a rketp l ace with diff e rential p r ivacy ( Dealer ) towards answering the following questions: How to formulate data owners' compensation functions and model buyers' price functions? How can the broker determine prices for a set of models to maximize the revenue with arbitrage-free guarantee, and train a set of models with maximum Shapley coverage given a manufacturing budget to remain competitive ? For the former, we propose compensation function for each data owner based on Shapley value and privacy sensitivity, and price function for each model buyer based on Shapley coverage sensitivity and noise sensitivity. Both privacy sensitivity and noise sensitivity are measured by the level of differential privacy. For the latter, we formulate two optimization problems for model pricing and model training, and propose efficient dynamic programming algorithms. Experiment results on the real chess dataset and synthetic datasets justify the design of Dealer and verify the efficiency and effectiveness of the proposed algorithms. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Contact tracing is an essential public health tool for controlling epidemic disease outbreaks such as the COVID-19 pandemic. Digital contact tracing using real-time locations or proximity of individuals can be used to significantly speed up and scale up contact tracing. In this article, we present our project, REACT, for REAal-time Contact Tracing and risk monitoring via privacy-enhanced tracking of users' locations and symptoms. With privacy enhancement that allows users to control and refine the precision with which their information will be collected and used, REACT will enable: 1) contact tracing of individuals who are exposed to infected cases and identification of hot-spot locations, 2) individual risk monitoring based on the locations they visit and their contact with others; and 3) community risk monitoring and detection of early signals of community spread. We will briefly describe our ongoing work and the approaches we are taking as well as some challenges we encountered in deploying the app. 
    more » « less
  4. null (Ed.)