The increasing demand for data-driven machine learning (ML) models has led to the emergence of model markets, where a broker collects personal data from data owners to produce high-usability ML models. To incentivize data owners to share their data, the broker needs to price data appropriately while protecting their privacy. For equitable data valuation , which is crucial in data pricing, Shapley value has become the most prevalent technique because it satisfies all four desirable properties in fairness: balance, symmetry, zero element, and additivity. For the right to be forgotten , which is stipulated by many data privacy protection laws to allow data owners to unlearn their data from trained models, the sharded structure in ML model training has become a de facto standard to reduce the cost of future unlearning by avoiding retraining the entire model from scratch. In this paper, we explore how the sharded structure for the right to be forgotten affects Shapley value for equitable data valuation in model markets. To adapt Shapley value for the sharded structure, we propose S-Shapley value, a sharded structure-based Shapley value, which satisfies four desirable properties for data valuation. Since we prove that computing S-Shapley value is #P-complete, two sampling-based methods are developed to approximate S-Shapley value. Furthermore, to efficiently update valuation results after data owners unlearn their data, we present two delta-based algorithms that estimate the change of data value instead of the data value itself. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithms.
more »
« less
Dealer: an end-to-end model marketplace with differential privacy
Data-driven machine learning has become ubiquitous. A marketplace for machine learning models connects data owners and model buyers, and can dramatically facilitate data-driven machine learning applications. In this paper, we take a formal data marketplace perspective and propose the first en D -to-end mod e l m a rketp l ace with diff e rential p r ivacy ( Dealer ) towards answering the following questions: How to formulate data owners' compensation functions and model buyers' price functions? How can the broker determine prices for a set of models to maximize the revenue with arbitrage-free guarantee, and train a set of models with maximum Shapley coverage given a manufacturing budget to remain competitive ? For the former, we propose compensation function for each data owner based on Shapley value and privacy sensitivity, and price function for each model buyer based on Shapley coverage sensitivity and noise sensitivity. Both privacy sensitivity and noise sensitivity are measured by the level of differential privacy. For the latter, we formulate two optimization problems for model pricing and model training, and propose efficient dynamic programming algorithms. Experiment results on the real chess dataset and synthetic datasets justify the design of Dealer and verify the efficiency and effectiveness of the proposed algorithms.
more »
« less
- PAR ID:
- 10225109
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 957 to 969
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Personal information and other types of private data are valuable for both data owners and institutions interested in providing targeted and customized services that require analyzing such data. In this context, privacy is sometimes seen as a commodity: institutions (data buyers) pay individuals (or data sellers) in exchange for private data. In this study, we examine the problem of designing such data contracts, through which a buyer aims to minimize his payment to the sellers for a desired level of data quality, while the latter aim to obtain adequate compensation for giving up a certain amount of privacy. Specifically, we use the concept of differential privacy and examine a model of linear and nonlinear queries on private data. We show that conventional algorithms that introduce differential privacy via zero-mean noise fall short for the purpose of such transactions as they do not provide sufficient degree of freedom for the contract designer to negotiate between the competing interests of the buyer and the sellers. Instead, we propose a biased differentially private algorithm which allows us to customize the privacy-accuracy tradeoff for each individual. We use a contract design approach to find the optimal contracts when using this biased algorithm to provide privacy, and show that under this combination the buyer can achieve the same level of accuracy with a lower payment as compared to using the unbiased algorithms, while incurring lower privacy loss for the sellers.more » « less
-
Modern data aggregation often involves a platform collecting data from a network of users with various privacy options. Platforms must solve the problem of how to allocate incentives to users to convince them to share their data. This paper puts forth an idea for a \textit{fair} amount to compensate users for their data at a given privacy level based on an axiomatic definition of fairness, along the lines of the celebrated Shapley value. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints. We also formulate a heterogeneous federated learning problem for the platform with privacy level options for users. By studying this problem, we investigate the amount of compensation users receive under fair allocations with different privacy levels, amounts of data, and degrees of heterogeneity. We also discuss what happens when the platform is forced to design fair incentives. Under certain conditions we find that when privacy sensitivity is low, the platform will set incentives to ensure that it collects all the data with the lowest privacy options. When the privacy sensitivity is above a given threshold, the platform will provide no incentives to users. Between these two extremes, the platform will set the incentives so some fraction of the users chooses the higher privacy option and the others chooses the lower privacy option.more » « less
-
Distributed learning allows a group of independent data owners to collaboratively learn a model over their data sets without exposing their private data. We present a distributed learning approach that combines differential privacy with secure multi-party computation. We explore two popular methods of differential privacy, output perturbation and gradient perturbation, and advance the state-of-the-art for both methods in the distributed learning setting. In our output perturbation method, the parties combine local models within a secure computation and then add the required differential privacy noise before revealing the model. In our gradient perturbation method, the data owners collaboratively train a global model via an iterative learning algorithm. At each iteration, the parties aggregate their local gradients within a secure computation, adding sufficient noise to ensure privacy before the gradient updates are revealed. For both methods, we show that the noise can be reduced in the multi-party setting by adding the noise inside the secure computation after aggregation, asymptotically improving upon the best previous results. Experiments on real world data sets demonstrate that our methods provide substantial utility gains for typical privacy requirements.more » « less
-
Data valuation, a growing field that aims at quantifying the usefulness of individual data sources for training machine learning (ML) models, faces notable yet often overlooked privacy challenges. This paper studies these challenges with a focus on KNN-Shapley, one of the most practical data valuation methods nowadays. We first emphasize the inherent privacy risks of KNN-Shapley, and demonstrate the significant technical challenges in adapting KNN-Shapley to accommodate differential privacy (DP). To overcome these challenges, we introduce TKNN-Shapley, a refined variant of KNN-Shapley that is privacy-friendly, allowing for straightforward modifications to incorporate DP guarantee (DP-TKNN-Shapley). We show that DP-TKNN-Shapley has several advantages and offers a superior privacy-utility tradeoff compared to naively privatized KNN-Shapley. Moreover, even non-private TKNN-Shapley matches KNN-Shapley's performance in discerning data quality. Overall, our findings suggest that TKNN-Shapley is a promising alternative to KNN-Shapley, particularly for real-world applications involving sensitive data.more » « less
An official website of the United States government

