Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Symptoms-tracking applications allow crowdsensing of health and location related data from individuals to track the spread and outbreaks of infectious diseases. During the COVID-19 pandemic, for the first time in history, these apps were widely adopted across the world to combat the pandemic. However, due to the sensitive nature of the data collected by these apps, serious privacy concerns were raised and apps were critiqued for their insufficient privacy safeguards. The Covid Nearby project was launched to develop a privacy-focused symptoms-tracking app and to understand the privacy preferences of users in health emergencies. In this work, we draw on the insights from the Covid Nearby users' data, and present an analysis of the significantly varying trends in users' privacy preferences with respect to demographics, attitude towards information sharing, and health concerns, e.g. after being possibly exposed to COVID-19. These results and insights can inform health informatics researchers and policy designers in developing more socially acceptable health apps in the future.more » « less
-
Open data sets that contain personal information are susceptible to adversarial attacks even when anonymized. By performing low-cost joins on multiple datasets with shared attributes, malicious users of open data portals might get access to information that violates individuals’ privacy. However, open data sets are primarily published using a release-and-forget model, whereby data owners and custodians have little to no cognizance of these privacy risks. We address this critical gap by developing a visual analytic solution that enables data defenders to gain awareness about the disclosure risks in local, joinable data neighborhoods. The solution is derived through a design study with data privacy researchers, where we initially play the role of a red team and engage in an ethical data hacking exercise based on privacy attack scenarios. We use this problem and domain characterization to develop a set of visual analytic interventions as a defense mechanism and realize them in PRIVEE, a visual risk inspection workflow that acts as a proactive monitor for data defenders. PRIVEE uses a combination of risk scores and associated interactive visualizations to let data defenders explore vulnerable joins and interpret risks at multiple levels of data granularity. We demonstrate how PRIVEE can help emulate the attack strategies and diagnose disclosure risks through two case studies with data privacy experts.more » « less
-
Privacy Attitudes and COVID Symptom Tracking Apps: Understanding Active Boundary Management by UsersMultiple symptom tracking applications (apps) were created during the early phase of the COVID-19 pandemic. While they provided crowdsourced information about the state of the pandemic in a scalable manner, they also posed significant privacy risks for individuals. The present study investigates the interplay between individual privacy attitudes and the adoption of symptom tracking apps. Using the communication privacy theory as a framework, it studies how users’ privacy attitudes changed during the public health emergency compared to the pre-COVID times. Based on focus-group interviews (N = 21), this paper reports significant changes in users’ privacy attitudes toward such apps. Research participants shared various reasons for both increased acceptability (e.g., disease uncertainty, public good) and decreased acceptability (e.g., reduced utility due to changed lifestyle) during COVID. The results of this study can assist health informatics researchers and policy designers in creating more socially acceptable health apps in the future.more » « less
-
Intelligently responding to a pandemic like Covid-19 requires sophisticated models over accurate real-time data, which is typically lacking at the start, e.g., due to deficient population testing. In such times, crowdsensing of spatially tagged disease-related symptoms provides an alternative way of acquiring real-time insights about the pandemic. Existing crowdsensing systems aggregate and release data for pre-fixed regions, e.g., counties. However, the insights obtained from such aggregates do not provide useful information about smaller regions e.g., neighborhoods where outbreaks typically occur and the aggregate-and-release method is vulnerable to privacy attacks. Therefore, we propose a novel differentially private method to obtain accurate insights from crowdsensed data for any number of regions specified by the users (e.g., researchers and a policy makers) without compromising privacy of the data contributors. Our approach, which has been implemented and deployed, informs the development of the future privacy-preserving intelligent systems for longitudinal and spatial data analytics.more » « less
An official website of the United States government
