skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2027790

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Logistic regression (LR) is a widely used classification method for modeling binary outcomes in many medical data classification tasks. Researchers that collect and combine datasets from various data custodians and jurisdictions can greatly benefit from the increased statistical power to support their analysis goals. However, combining data from different sources creates serious privacy concerns that need to be addressed. Methods In this paper, we propose two privacy-preserving protocols for performing logistic regression with the Newton–Raphson method in the estimation of parameters. Our proposals are based on secure Multi-Party Computation (MPC) and tailored to the honest majority and dishonest majority security settings. Results The proposed protocols are evaluated against both synthetic and real-world datasets in terms of efficiency and accuracy, and a comparison is made with the ordinary logistic regression. The experimental results demonstrate that the proposed protocols are highly efficient and accurate. Conclusions Our work introduces two iterative algorithms to enable the distributed training of a logistic regression model in a privacy-preserving manner. The implementation results show that our algorithms can handle large datasets from multiple sources. 
    more » « less
  2. The global and national response to the COVID-19 pandemic has been inadequate due to a collective lack of preparation and a shortage of available tools for responding to a large-scale pandemic. By applying lessons learned to create better preventative methods and speedier interventions, the harm of a future pandemic may be dramatically reduced. One potential measure is the widespread use of contact tracing apps. While such apps were designed to combat the COVID-19 pandemic, the time scale in which these apps were deployed proved a significant barrier to efficacy. Many companies and governments sprinted to deploy contact tracing apps that were not properly vetted for performance, privacy, or security issues. The hasty development of incomplete contact tracing apps undermined public trust and negatively influenced perceptions of app efficacy. As a result, many of these apps had poor voluntary public uptake, which greatly decreased the apps’ efficacy. Now, with lessons learned from this pandemic, groups can better design and test apps in preparation for the future. In this viewpoint, we outline common strategies employed for contact tracing apps, detail the successes and shortcomings of several prominent apps, and describe lessons learned that may be used to shape effective contact tracing apps for the present and future. Future app designers can keep these lessons in mind to create a version that is suitable for their local culture, especially with regard to local attitudes toward privacy-utility tradeoffs during public health crises. 
    more » « less
  3. null (Ed.)
    Contact tracing is an essential public health tool for controlling epidemic disease outbreaks such as the COVID-19 pandemic. Digital contact tracing using real-time locations or proximity of individuals can be used to significantly speed up and scale up contact tracing. In this article, we present our project, REACT, for REAal-time Contact Tracing and risk monitoring via privacy-enhanced tracking of users' locations and symptoms. With privacy enhancement that allows users to control and refine the precision with which their information will be collected and used, REACT will enable: 1) contact tracing of individuals who are exposed to infected cases and identification of hot-spot locations, 2) individual risk monitoring based on the locations they visit and their contact with others; and 3) community risk monitoring and detection of early signals of community spread. We will briefly describe our ongoing work and the approaches we are taking as well as some challenges we encountered in deploying the app. 
    more » « less