skip to main content

Search for: All records

Award ID contains: 2028301

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    The development of public health policy is inextricably linked with governance structure. In our increasingly globalized world, human migration and infectious diseases often span multiple administrative jurisdictions that might have different systems of government and divergent management objectives. However, few studies have considered how the allocation of regulatory authority among jurisdictions can affect disease management outcomes.

    Methods

    Here we evaluate the relative merits of decentralized and centralized management by developing and numerically analyzing a two-jurisdictionSIRSmodel that explicitly incorporates migration. In our model, managers choose between vaccination, isolation, medication, border closure, and a travel ban on infected individuals while aiming tomore »minimize either the number of cases or the number of deaths.

    Results

    We consider a variety of scenarios and show how optimal strategies differ for decentralized and centralized management levels. We demonstrate that policies formed in the best interest of individual jurisdictions may not achieve global objectives, and identify situations where locally applied interventions can lead to an overall increase in the numbers of cases and deaths.

    Conclusions

    Our approach underscores the importance of tailoring disease management plans to existing regulatory structures as part of an evidence-based decision framework. Most importantly, we demonstrate that there needs to be a greater consideration of the degree to which governance structure impacts disease outcomes.

    « less
  2. Free, publicly-accessible full text available June 1, 2023
  3. Free, publicly-accessible full text available March 1, 2023
  4. Flegg, Jennifer A. (Ed.)
    Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which rely on widely administered frequent and rapid diagnostics to identify and isolate infected individuals, could be a potentially less disruptive management strategy, particularly where vaccine access is limited. In this paper, we assess the extent to which mass testing and isolation strategies can reduce reliance on socially costly non-pharmaceutical interventions, such as distancing and shutdowns. We develop a multi-compartmental model of SARS-CoV-2 transmission incorporating both preventative non-pharmaceutical interventions (NPIs) and testing and isolation to evaluate theirmore »combined effect on public health outcomes. Our model is designed to be a policy-guiding tool that captures important realities of the testing system, including constraints on test administration and non-random testing allocation. We show how strategic changes in the characteristics of the testing system, including test administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs without compromising public health outcomes in the future. The lowest NPI levels are possible only when many tests are administered and test delays are short, given limited immunity in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing program to identify and isolate unreported, asymptomatic infections. Changes in NPIs, including the intensity of lockdowns and stay at home orders, should be coordinated with increases in testing to ensure epidemic control; otherwise small additional lifting of these NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly, our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for the flexible design of combined interventions based on social context, and inform future cost-benefit analyses to identify efficient pandemic management strategies.« less
    Free, publicly-accessible full text available October 28, 2022
  5. More than 1.6 million Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) tests were administered daily in the United States at the peak of the epidemic, with a significant focus on individual treatment. Here, we show that objective-driven, strategic sampling designs and analyses can maximize information gain at the population level, which is necessary to increase situational awareness and predict, prepare for, and respond to a pandemic, while also continuing to inform individual treatment. By focusing on specific objectives such as individual treatment or disease prediction and control (e.g., via the collection of population-level statistics to inform lockdown measures or vaccinemore »rollout) and drawing from the literature on capture–recapture methods to deal with nonrandom sampling and testing errors, we illustrate how public health objectives can be achieved even with limited test availability when testing programs are designed a priori to meet those objectives.« less
  6. null (Ed.)
  7. Abstract During a disease outbreak, healthcare workers (HCWs) are essential to treat infected individuals. However, these HCWs are themselves susceptible to contracting the disease. As more HCWs get infected, fewer are available to provide care for others, and the overall quality of care available to infected individuals declines. This depletion of HCWs may contribute to the epidemic's severity. To examine this issue, we explicitly model declining quality of care in four differential equation-based susceptible, infected and recovered-type models with vaccination. We assume that vaccination, recovery and survival rates are affected by quality of care delivered. We show that explicitly modellingmore »HCWs and accounting for declining quality of care significantly alters model-predicted disease outcomes, specifically case counts and mortality. Models neglecting the decline of quality of care resulting from infection of HCWs may significantly under-estimate cases and mortality. These models may be useful to inform health policy that may differ for HCWs and the general population. Models accounting for declining quality of care may therefore improve the management interventions considered to mitigate the effects of a future outbreak.« less