skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2028773

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper describes how moiré plasmonic nanoparticle lattices can exhibit lasing action over a broad wavelength and wavevector range. Moiré nanolithography is combined with the PEEL (Photolithography, Etching, Electron‐beam deposition, and Lift‐off) process to fabricate in‐plane incommensurate lattices with optical properties beyond the restricted geometries of Bravais lattices. Because of increased rotational symmetry, moiré lattices support a larger number of transverse electric and transverse magnetic modes relative to their periodic base lattices. It is found that multidirectional lasing characteristics can be predicted by the symmetry of the moiré reciprocal lattice. Incommensurate moiré plasmonic lattices combine advantages of the dense band structures observed in aperiodic lattices with that of predicted modes in Bravais lattices for light‐based technologies in coherent light sources and multiplexed data transfer. 
    more » « less