Identifying regions that mediate regional propagation of atmospheric perturbations is important to assessing the susceptibility and resilience of complex hydroclimate systems. Detecting the regional gateways through causal inference, can help unravel the interplay of physical processes and inform projections of future changes. In this study, we characterize the causal interactions among nine climate regions in the contiguous United States using long‐term (1901–2018) precipitation data. The constructed causal networks reveal the cross‐regional propagation of precipitation perturbations. Results show that the Ohio Valley region acts as an atmospheric gateway for precipitation and moisture transport in the U.S., which is largely regulated by the regional convective uplift. The findings have implications for improving predicative capacity of hydroclimate modeling of regional precipitation.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Urban areas experience numerous environmental challenges, among which the anthropogenic emissions of heat and carbon are two major contributors, the former is responsible for the notorious urban heat effect, the latter longterm climate changes. Moreover, the exchange of heat and carbon dioxide are closely interlinked in the built environment, and can form positive feedback loops that accelerate the degradation of urban environmental quality. Among a handful countermeasures for heat and carbon mitigation, urban irrigation is believed to be effective in cooling, yet the understanding of its impact on the co-evolution of heat and carbon emission remains obscure. In this study, we conducted multiphysics urban climate modeling for all urban areas in the contiguous United States, and evaluated the irrigation-induced cooling and carbon mitigation. Furthermore, we assessed the impact of urban irrigation on the potential heat-carbon feedback loop, with their strength of coupling quantified by an advanced causal inference method using the convergent cross mapping algorithms. It is found that the impact of urban irrigation varies vastly in geographically different cities, with its local and non-local effect unraveling distinct pathways of heat-carbon feedback mechanism.more » « less
-
The exacerbated thermal environment in cities, the urban heat island (UHI) effect as a prominent example, has been the source of many adverse urban environmental issues, including the increase of health risks, degradation of air quality and ecosystem services, and reduced resiliency of engineering infrastructure. Last decades have witnessed tremendous efforts and resources being invested to find sustainable solutions for urban heat mitigation, whereas the relative contributions of different UHI attributes and their patterns of spatio-temporal variability remain obscure. In this study, we employed the random forest (RF) method to quantify the relative importance of four categories of urban surface characteristics that regulate the surface UHI, namely the urban greenery fraction, land surface albedo, urban morphology, and level of human activities. We selected seventeen major cities from six megaregions in China as our study areas, with the RF training and test sets obtained from multi-sourced remote sensing and observational data products. It is found that the urban greenery coverage manifests as the most important environmental determinants of UHI, followed by surface albedo. The results are informative for urban planners, policymakers, and engineering practitioners to design and implement sustainable strategies for urban heat mitigation.more » « less
-
As important determinants of urban thermal environment, surface roughness and morphology have been extensively studied for sustainable urban development. In this study, we quantify the effect of urban roughness and morphology on the surface urban heat island (SUHI) intensity and its spatiotemporal patterns, over seventeen major cities in six urban agglomerations of China. We employ multisource dataset and derive multiple measures, representative of the roughness and horizontal/vertical indicators of urban morphology. The results show that the correlation between the SUHI intensity and urban morphological indices is significantly strengthened with the heat island intensity, manifested by the contrasting Pearson’s r in summer (r = 0.59 ± 0.13) and winter (0.11 ± 0.35). In general, the impact assessed using different measures of surface morphology is consistent on the SUHI intensity, while the one-dimensional (1D) roughness emerges as an adequate index not inferior to more complex morphological parameters. Our study also shows that the impact of urban morphology varies in different geographic and climatic regions, as well as with different urban management, which highlights the importance of locality and site-specific design in implementing effective urban heat mitigation strategies.more » « less
-
Abstract. One critical challenge of studying Earth's hydroclimate system, in the face of global environmental changes, is to predict whether the system approaches a critical threshold. Here, we identified the critical transitions of hydrological processes, including precipitation and potential evapotranspiration, by analyzing their early-warning signals and system-based network structures. The statistical early-warning signals are manifest in increasing trends of autocorrelation and variance in the hydrologic system ranging from regional to global scales, prior to climate shifts in the 1970s and 1990s, in agreement with observations. We further extended the conventional statistics-based measures of early-warning signals to system-based network analysis in urban areas across the contiguous United States. The topology of an urban precipitation network features hub-periphery (clustering) and modular organization, with strong intra-regional connectivity and inter-regional gateways (teleconnection). We found that several network parameters (mean correlation coefficient, density, and clustering coefficient) gradually increased prior to the critical transition in the 1990s, signifying the enhanced synchronization among urban precipitation patterns. These topological parameters can not only serve as novel system-based early-warning signals for critical transitions in hydrological processes but also shed new light on structure–dynamic interactions in the complex hydrological system.more » « less