skip to main content

Title: Spatiotemporal patterns of the impact of surface roughness and morphology on urban heat island
As important determinants of urban thermal environment, surface roughness and morphology have been extensively studied for sustainable urban development. In this study, we quantify the effect of urban roughness and morphology on the surface urban heat island (SUHI) intensity and its spatiotemporal patterns, over seventeen major cities in six urban agglomerations of China. We employ multisource dataset and derive multiple measures, representative of the roughness and horizontal/vertical indicators of urban morphology. The results show that the correlation between the SUHI intensity and urban morphological indices is significantly strengthened with the heat island intensity, manifested by the contrasting Pearson’s r in summer (r = 0.59 ± 0.13) and winter (0.11 ± 0.35). In general, the impact assessed using different measures of surface morphology is consistent on the SUHI intensity, while the one-dimensional (1D) roughness emerges as an adequate index not inferior to more complex morphological parameters. Our study also shows that the impact of urban morphology varies in different geographic and climatic regions, as well as with different urban management, which highlights the importance of locality and site-specific design in implementing effective urban heat mitigation strategies.  more » « less
Award ID(s):
2028868 1930629
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Sustainable Cities and Society
Page Range / eLocation ID:
Subject(s) / Keyword(s):
["Land surface temperature","Spatiotemporal patterns","Surface roughness","Urban heat island","Urban morphology"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this study, we simulate the magnitude of urban heat islands (UHIs) during heat wave (HWs) in two cities with contrasting climates (Boston, Massachusetts, and Phoenix, Arizona) using the Weather Research and Forecasting (WRF) Model and quantify their drivers with a newly developed attribution method. During the daytime, a surface UHI (SUHI) is found in Boston, which is mainly caused by the higher urban surface resistance that reduces the latent heat flux and the higher urban aerodynamic resistance r a that inhibits convective heat transfer between the urban surface and the lower atmosphere. In contrast, a daytime surface urban cool island is found in Phoenix, which is mainly due to the lower urban r a that facilitates convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no daytime AUHI in either city. At night, an SUHI and an AUHI are identified in Boston that are due to the stronger release of heat storage in urban areas. In comparison, the lower urban r a in Phoenix enhances convective heat transfer from the atmosphere to the urban surface at night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of UHIs or urban cool islands is strongly controlled by urban–rural differences in terms of aerodynamic features, vegetation and moisture conditions, and heat storage, which show contrasting characteristics in different regions. 
    more » « less
  2. The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal, seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling. 
    more » « less
  3. Urban areas are often warmer than rural areas due to the phenomenon known as the “urban heat island” (UHI) effect, which can cause discomfort for those engaging in outdoor activities and can have a disproportionate impact on low-income communities, people of color, and the elderly. The intensity of the UHI effect is influenced by a variety of factors, including urban morphology, which can vary from one area to another. To investigate the relationship between outdoor thermal comfort and urban morphology in different urban blocks with varying social vulnerability status, this study developed a geographic information system (GIS)-based workflow that combined the “local climate zone” (LCZ) classification system and an urban microclimate assessment tool called ENVI-met. To demonstrate the effectiveness of this methodology, the study selected two different urban blocks in Philadelphia, Pennsylvania–with high and low social vulnerability indices (SVI)–to compare their microclimate conditions in association with urban morphological characteristics such as green coverage area, sky view factor (SVF), albedo, and street height to width (H/W) ratio. The results of the study showed that there was a strong correlation between tree and grass coverage and outdoor air and mean radiant temperature during hot seasons and extremely hot days, which in turn affected simulated predicted mean vote (PMV). The effects of greenery were more significant in the block associated with a low SVI, where nearly 50% of the site was covered by trees and grass, compared to only 0.02% of the other block associated with a high SVI. Furthermore, the investigation discovered that reduced SVF, along with increased albedo and H/W ratio, had a beneficial impact on the microclimate at the pedestrian level within the two studied urban blocks. This study provided an effective and easy-to-implement method for tackling the inequity issue of outdoor thermal comfort and urban morphology at fine geographic scales. 
    more » « less
  4. Abstract

    Coastal marine heatwaves (MHWs) modulate coastal climate through ocean‐land‐atmosphere interactions, but little is known about how coastal MHWs interact with coastal cities and modify urban thermal environment. In this study, a representative urban coastal environment under MHWs is simplified to a mixed convection problem. Fourteen large‐eddy simulations (LESs) are conducted to investigate how coastal cities interact with MHWs. We consider the simulations by simple urban roughness setup (Set A) as well as explicit urban roughness representation (Set B). Besides, different MHW intensities, synoptic wind speeds, surface fluxes of urban and sea patches are considered. Results suggest that increasing MHW intensity alters streamwise potential temperature gradient and vertical velocity direction. The magnitude of vertical velocity and urban heat island (UHI) intensity decrease with increasing synoptic wind speed. Changing urban or sea surface heat flux also leads to important differences in flow and temperature fields. Comparison between Set A and B reveals a significant increase of vertical velocity magnitude and UHI intensity. To further understand this phenomenon, a canopy layer UHI model is proposed to show the relationship between UHI intensity and urban canopy, thermal heterogeneity and mean advection. The effect of urban canopy is considered in terms of an additional vertical velocity scale that facilitates heat transport from the heated surface and therefore increases UHI intensity. The model can well explain the trend of the simulated results and implies that overlooking the effect of urban canopy underestimates canopy UHI in urban coastal environment.

    more » « less
  5. null (Ed.)
    Abstract Urban heat islands (UHIs) are caused by a multitude of changes induced by urbanization. However, the relative importance of biophysical and atmospheric factors in controlling the UHI intensity remains elusive. In this study, we quantify the magnitude of surface UHIs (SUHIs), or surface urban cool islands (SUCIs), and elucidate their biophysical and atmospheric drivers on the basis of observational data collected from one urban site and two rural grassland sites in and near the city of Nanjing, China. Results show that during the daytime a strong SUCI effect is observed when the short grassland site is used as the reference site whereas a moderate SUHI effect is observed when the tall grassland is used as the reference site. We find that the former is mostly caused by the lower aerodynamic resistance for convective heat transfer at the urban site and the latter is primarily caused by the higher surface resistance for evapotranspiration at the urban site. At night, SUHIs are observed when either the short or the tall grassland site is used as the reference site and are predominantly caused by the stronger release of heat storage at the urban site. In general, the magnitude of SUHI is much weaker, and even becomes SUCI during daytime, with the short grassland site being the reference site because of its larger aerodynamic resistance. The study highlights that the magnitude of SUHIs and SUCIs is mostly controlled by urban–rural differences of biophysical factors, with urban–rural differences of atmospheric conditions playing a minor role. 
    more » « less