skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2029059

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single crystal Ni-based superalloys are often used to create gas turbine engine blades for their high strength under intense thermo-mechanical loading. Though they are remarkably capable under these conditions, a particular class of premature failure mechanisms known as surface-initiated damage mechanisms can lead to the early fracture of an otherwise healthy blade. This review paper discusses the current progress of post-processing techniques that can greatly mitigate the potency of surface-initiated damage mechanisms. In particular, laser peening (LP) is of significant interest due to the relatively low amount of cold work it induces, greater depth of compressive residual stresses than other cold working methods, ability to accommodate complex part geometries, and the minuscule effect it has on surface roughness. The residual stresses imparted by LP can greatly hinder crack growth and consequently allow for enhanced fatigue life. Given that turbine blades (constructed with single crystal Ni-based superalloys) are prone to fail by these mechanisms, LP could be a worthy choice for increasing their service lives. For this reason, initiative has been taken to better understand the mechanical and microstructural modifications imparted by LP on single crystal Ni-based superalloys and a summary of these investigations are presented in this review. Results from several works show that this class of alloy responds well to LP treatment with improvements such as ~30–50% increase in microhardness, 72% increase in low cycle fatigue life, and elevated resistance to hot corrosion. The primary objective of this review is to provide insight into current state-of-the-art LP techniques and summarize the findings of numerous works which have utilized LP for increasing the service lives of single crystal Ni-based superalloy components. 
    more » « less
  2. Abstract In this research, a room temperature multicycle nanoindentation technique was implemented to evaluate the effects of the laser peening (LP) process on the surface mechanical behavior of additively manufactured (AM) Inconel 625. Repetitive deformation was introduced by loading-unloading during an instrumented nanoindentation test on the as-built (No LP), 1-layer, and 4-layer laser peened (1LP and 4LP) conditions. It was observed that laser-peened specimens had a significantly higher resistance to penetration of the indenter and lower permanent deformation. This is attributed to the pre-existing dislocation density induced by LP in the material which affects the dislocation interactions during the cyclic indentation. Moreover, high levels of compressive stresses, which are greater in the 4LP specimen than the 1LP specimen, lead to more effective improvement of surface fatigue properties. The transition of the material response from elastic-plastic to almost purely elastic in 4LP specimens was initiated much earlier than it did in the No LP, and 1LP specimens. In addition to the surface fatigue properties, hardness and elastic modulus were also evaluated and compared. 
    more » « less