The aim of this study is to experimentally investigate the fatigue behavior of additively manufactured (AM) NiTi (i.e. Nitinol) specimens and compare the results to the wrought material. Additive manufacturing is a technique in which components are fabricated in a layer-by-layer additive process using a sliced CAD model based on the desired geometry. NiTi rods were fabricated in this study using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) AM technique. Due to the high plateau stress of the as-fabricated NiTi, all the AM specimens were heat-treated to reduce their plateau stress, close to the one for the wrought material. Two different heat treatment processes, resulting in different stress plateaus, were employed to be able to compare the results in stress- and strain-based fatigue analysis. Straincontrolled constant amplitude pulsating fatigue experiments were conducted on heat-treated AM NiTi specimens at room temperature (~24°C) to investigate their cyclic deformation and fatigue behavior. Fatigue lives of AM NiTi specimens were observed to be shorter than wrought material specifically in the high cycle fatigue regime. Fractography of the fracture surface of fatigue specimens using Scanning Electron Microscopy (SEM) revealed the presence of microstructural defects such as voids, resulting from entrapped gas ormore »
Multi-cycling nanoindentation in additively manufactured Inconel 625 before and after laser peening
Abstract In this research, a room temperature multicycle nanoindentation technique was implemented to evaluate the effects of the laser peening (LP) process on the surface mechanical behavior of additively manufactured (AM) Inconel 625. Repetitive deformation was introduced by loading-unloading during an instrumented nanoindentation test on the as-built (No LP), 1-layer, and 4-layer laser peened (1LP and 4LP) conditions. It was observed that laser-peened specimens had a significantly higher resistance to penetration of the indenter and lower permanent deformation. This is attributed to the pre-existing dislocation density induced by LP in the material which affects the dislocation interactions during the cyclic indentation. Moreover, high levels of compressive stresses, which are greater in the 4LP specimen than the 1LP specimen, lead to more effective improvement of surface fatigue properties. The transition of the material response from elastic-plastic to almost purely elastic in 4LP specimens was initiated much earlier than it did in the No LP, and 1LP specimens. In addition to the surface fatigue properties, hardness and elastic modulus were also evaluated and compared.
- Publication Date:
- NSF-PAR ID:
- 10347234
- Journal Name:
- Surface Topography: Metrology and Properties
- Volume:
- 10
- Issue:
- 2
- Page Range or eLocation-ID:
- 025031
- ISSN:
- 2051-672X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mechanical properties of fiber reinforced polymer matrix composites are known to gradually deteriorate as fatigue damage accumulates under cyclic loading conditions. While the steady degradation in elastic stiffness throughout fatigue life is a well-established and studied concept, it remains difficult to continuously monitor such structural changes during the service life of many dynamic engineering systems where composite materials are subjected to random and unexpected loading conditions. Recently, laser induced graphene (LIG) has been demonstrated to be a reliable, in-situ strain sensing and damage detection component in fiberglass composites under both quasi-static and dynamic loading conditions. This work investigates the potential of exploiting the piezoresistive properties of LIG interlayered fiberglass composites in order to formulate cumulative damage parameters and predict both damage progression and fatigue life using artificial neural networks (ANNs) and conventional phenomenological models. The LIG interlayered fiberglass composites are subjected to tension–tension fatigue loading, while changes in their elastic stiffness and electrical resistance are monitored through passive measurements. Damage parameters that are defined according to changes in electrical resistance are found to be capable of accurately describing damage progression in LIG interlayered fiberglass composites throughout fatigue life, as they display similar trends to those based on changes inmore »
-
The mechanical properties of fiber reinforced polymer matrix composites are known to gradually deteriorate as fatigue damage accumulates under cyclic loading conditions. While the steady degradation in elastic stiffness throughout fatigue life is a well-established and studied concept, it remains difficult to continuously monitor such structural changes during the service life of many dynamic engineering systems where composite materials are subjected to random and unexpected loading conditions. Recently, laser induced graphene (LIG) has been demonstrated to be a reliable, in-situ strain sensing and damage detection component in fiberglass composites under both quasi-static and dynamic loading conditions. This work investigates the potential of exploiting the piezoresistive properties of LIG interlayered fiberglass composites in order to formulate cumulative damage parameters and predict both damage progression and fatigue life using artificial neural networks (ANNs) and conventional phenomenological models. The LIG interlayered fiberglass composites are subjected to tension–tension fatigue loading, while changes in their elastic stiffness and electrical resistance are monitored through passive measurements. Damage parameters that are defined according to changes in electrical resistance are found to be capable of accurately describing damage progression in LIG interlayered fiberglass composites throughout fatigue life, as they display similar trends to those based on changes inmore »
-
Continuous bending under tension (CBT) is known to achieve elongation-to-failure well above that achieved under a conventional uniaxial simple tension (ST) strain path. However, the detailed mechanism for supplying this increased ductility has not been fully understood. It is clear that the necking that occurs in a typical ST specimen is avoided by constantly moving the region of plastic deformation during the CBT process. The volume of material in which the flow stress is greatest is limited to a moving line where the rollers contact the sheet and superimpose bending stress on the applied tensile load. Hence the condition of a large volume of material experiencing stress greater than the material flow stress, leading to strain localization during ST, is avoided. However, the magnitude of the contribution of this phenomenon to the overall increase in elongation is unclear. In the current set of experiments, an elongation to fracture (ETF) of 4.56x and 3.7x higher than ST was achieved by fine-tuning CBT forming parameters for Q&P 1180 and TBF 1180, respectively. A comparison of maximum local strains near the final point of fracture in ST and CBT sheets via digital image correlation revealed that avoidance of localization of plastic strain duringmore »
-
Digital image correlation (DIC) is a non-destructive and non-contact optical technique to measure deformation and strain of materials. The method is based on optically tracking the displacements of a speckle pattern created on the material surface. In the case of soft tissues such as mouse aorta, there are several advantages to using DIC since it can provide local, rather than global, deformations and it is suitable for large strain measurements, typical of soft tissues taken to failure [1] [2]. For the optimal use of DIC, several requirements should be met for speckle patterning: 1) randomness, 2) high contrast, 3) appropriate size of speckle in the field of view (3-5 pixels), and 4) firm attachment of speckle to specimen during deformation. In previous DIC studies of soft tissues, the methods employed to create a speckle pattern include the use of an airbrush to spray dye or paint on the specimen, or coating the sample with toner powder. However, biological samples must be partially dehydrated before applying paint which may affect the mechanical properties of the specimen, and toner powder is too hydrophobic to adhere well on specimens when submerged in aqueous solution during mechanical testing. In addition, it is difficult tomore »