skip to main content

Search for: All records

Award ID contains: 2029641

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The recently conceived gap test and its simulation revealed that the fracture energy Gf (or Kc, Jcr) of concrete, plastic-hardening metals, composites, and probably most materials can change by ±100%, depending on the crack-parallel stresses σxx, σzz, and their history. Therefore, one must consider not only a finite length but also a finite width of the fracture process zone, along with its tensorial damage behavior. The data from this test, along with ten other classical tests important for fracture problems (nine on concrete, one on sandstone), are optimally fitted to evaluate the performance of the state-of-art phase-field, peridynamic, and crack band models. Thanks to its realistic boundary and crack-face conditions as well as its tensorial nature, the crack band model, combined with the microplane damage constitutive law in its latest version M7, is found to fit all data well. On the contrary, the phase-field models perform poorly. Peridynamic models (both bond based and state based) perform even worse. The recent correction in the bond-associated deformation gradient helps to improve the predictions in some experiments, but not all. This confirms the previous strictly theoretical critique (JAM 2016), which showed that peridynamics of all kinds suffers from several conceptual faults: (1)more »It implies a lattice microstructure; (2) its particle–skipping interactions are a fiction; (4) it ignores shear-resisted particle rotations (which are what lends the lattice discrete particle model (LDPM) its superior performance); (3) its representation of the boundaries, especially the crack and fracture process zone faces, is physically unrealistic; and (5) it cannot reproduce the transitional size effect—a quintessential characteristic of quasibrittleness. The misleading practice of “verifying” a model with only one or two simple tests matchable by many different models, or showcasing an ad hoc improvement for one type of test while ignoring misfits of others, is pointed out. In closing, the ubiquity of crack-parallel stresses in practical problems of concrete, shale, fiber composites, plastic-hardening metals, and materials on submicrometer scale is emphasized.« less
    Free, publicly-accessible full text available June 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. Abstract In the standard fracture test specimens, the crack-parallel normal stress is negligible. However, its effect can be strong, as revealed by a new type of experiment, briefly named the gap test. It consists of a simple modification of the standard three-point-bend test whose main idea is to use plastic pads with a near-perfect yield plateau to generate a constant crack-parallel compression and install the end supports with a gap that closes only when the pads yield. This way, the test beam transits from one statically determinate loading configuration to another, making evaluation unambiguous. For concrete, the gap test showed that moderate crack-parallel compressive stress can increase up to 1.8 times the Mode I (opening) fracture energy of concrete, and reduce it to almost zero on approach to the compressive stress limit. To model it, the fracture process zone must be characterized tensorially. We use computer simulations with crack-band microplane model, considering both in-plane and out-of-plane crack-parallel stresses for plain and fiber-reinforced concretes, and anisotropic shale. The results have broad implications for all quasibrittle materials, including shale, fiber composites, coarse ceramics, sea ice, foams, and fone. Except for negligible crack-parallel stress, the line crack models are shown to be inapplicable.more »Nevertheless, as an approximation ignoring stress tensor history, the crack-parallel stress effect may be introduced parametrically, by a formula. Finally we show that the standard tensorial strength models such as Drucker–Prager cannot reproduce these effects realistically.« less
  4. The line crack models, including linear elastic fracture mechanics (LEFM), cohesive crack model (CCM), and extended finite element method (XFEM), rest on the century-old hypothesis of constancy of materials’ fracture energy. However, the type of fracture test presented here, named the gap test, reveals that, in concrete and probably all quasibrittle materials, including coarse-grained ceramics, rocks, stiff foams, fiber composites, wood, and sea ice, the effective mode I fracture energy depends strongly on the crack-parallel normal stress, in-plane or out-of-plane. This stress can double the fracture energy or reduce it to zero. Why hasn’t this been detected earlier? Because the crack-parallel stress in all standard fracture specimens is negligible, and is, anyway, unaccountable by line crack models. To simulate this phenomenon by finite elements (FE), the fracture process zone must have a finite width, and must be characterized by a realistic tensorial softening damage model whose vectorial constitutive law captures oriented mesoscale frictional slip, microcrack opening, and splitting with microbuckling. This is best accomplished by the FE crack band model which, when coupled with microplane model M7, fits the test results satisfactorily. The lattice discrete particle model also works. However, the scalar stress–displacement softening law of CCM and tensorial modelsmore »with a single-parameter damage law are inadequate. The experiment is proposed as a standard. It represents a simple modification of the three-point-bend test in which both the bending and crack-parallel compression are statically determinate. Finally, a perspective of various far-reaching consequences and limitations of CCM, LEFM, and XFEM is discussed.

    « less