ABSTRACT:Long-term deep sequestration of CO2-rich brine in deep formations of ultramafic rock (e.g. Oman serpentinized harzburgite) will be feasible only if a network of hydraulic cracks could be produced and made to grow for years and decades. Fraccing of gas- or oil-bearing shales has a similar objective. The following points are planned to be made in the presentation in Golden. 1) A branching of fracture can be analyzed only if the fracture is modeled by a band with triaxial tensorial damage, for which the new smooth Lagrangian crack band model is effective. 2) To achieve a progressive growth of the fracture network one will need to manipulate the osmotic pressure gradients by changing alkali metal ion concentration in pore fluid. 3) A standardized experimental framework to measure rock permeability at various ion concentrations and various osmotic pressure gradients is needed, and will be presented. 1 INTRODUCTIONCarbon dioxide (CO2) emissions by human activities is the largest contributor to global warming; therefore, effective carbon sequestration technologies attract great amount of interest. One emerging and promising technology for storing CO2 in the subsurface permanently is through carbon mineralization in mafic and ultramafic rock (Kelemen and Matter, 2008). Despite the abundance of these types of rock in the Earth's upper crust (Matter et al., 2016), the rate of this process in nature is too slow to reduce CO2 emissions effectively (Seifritz, 1990). One of the key challenges to achieve a sustainable and large-scale storage of CO2 by mineralization is to engineer a progressive growth of a fracture network conveying water with dissolved CO2 to reach a gradually increasing volume of the mafic rock formation. The CO2 rich water often cannot penetrate the tight matrix of silica-rich serpentinized harzburgites because under high concentrations of CO2, the wetting angle of CO2 -bearing water-rock-rock interface exceeds the critical value of 60 degrees. Therefore, the presence of a family of cracks is the only means by which CO2 -bearing fluids can interact with matrix of ultramafic rock (Bruce Watson and Brenan, 1987). Lateral fracture branching from a major fracture provides a sustainable fluid pathway and therefore is essential for continued rock-water geochemical reactions that lead to mineralization of carbonate minerals. Realistic computational modeling of hydraulic fractures in peridotite or basalt must involve lateral fracture branching and account for stress distribution changes between solid and fluid phases under constant tectonic stress, triggered by pore exposure to fluid pressure in hydraulic cracks.
more »
« less
This content will become publicly available on June 8, 2026
Fast permeability measurements of tight rock: Theoretical study and experimental validation
ABSTRACT:Using the classical pulse decay test to measure the permeability of tight rock such as serpentinized harzburgite can be time-consuming, often requiring hours or even days. This prolonged duration not only complicates experimental control but also introduces difficulties in maintaining stable environmental conditions. To address such challenges, a fast permeability measurement method has been developed based on an analytical solution that approximates the pressure distribution in the test specimen using parabolic arcs. This solution yields a simple linear regression formula, enabling rapid interpretation of rock permeability using data from only the initial stage of the pulse decay test. In this study, the proposed method is validated by numerical simulations using synthesized pulse decay test data. In addition, an experimental validation of this method using a serpentinized harzburgite is also presented. It is shown that the method is not only faster but also more accurate than the classical method, which ignores the storage of the rock specimen.
more »
« less
- Award ID(s):
- 2029641
- PAR ID:
- 10626895
- Publisher / Repository:
- ARMA
- Date Published:
- Format(s):
- Medium: X
- Location:
- Santa Fe, New Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Generation of a large network of hydraulic cracks is of key importance not only for the success of fracking of shale but also for the recent scheme of sequestration of CO2 in deep formations of basalt and peridotite, which are mafic and ultramafic rocks that combine chemically with CO2. In numerical simulation of the creation of a fracture network in porous rock, an important goal is to enhance the rock permeability. The objective of this article is to calculate the effect of osmotic pressure gradients caused by gradients of concentration of the ions of Ca, Mg, Na, etc. on the effective permeability of the rock. The basic differential equations are formulated, and their explicit solutions for appropriate initial and boundary conditions are obtained under certain plausible simplifications. The main result is explicit approximate formulas for the critical time before which no water permeation through a test specimen can be observed. Depending on various parameters, this time can be unacceptably long, which is manifested as a zero water outflow. The solution may also explain the unreasonably small permeability values reported for some shales.more » « less
-
Abstract BackgroundModern computational modeling could provide the key to obtaining new insights into the mechanisms of maize stalk failure as well as suggesting new ways to improve stalk strength. However, a complete set of mechanical properties of maize tissues is required to enable computational modeling of maize stems. This study developed two compression test methods for obtaining the longitudinal modulus of elasticity of both rind and pith tissues, assessed the influence of water content on tissue properties, and investigated the relationship between rind modulus and pith modulus. These methods involved uniform 5–7 cm segments of maize stems which were scanned using a flatbed scanner then tested in compression using a universal testing machine in both intact and dissected (rind-only and pith-only) states. ResultsThe modulus of elasticity of pith tissues was highest for fully turgid specimens and decreased as water was removed from the specimens. Water content was negatively correlated with the modulus of elasticity of the rind. Rind and pith tissues were found to be weakly correlated. The median ratio of rind modulus to pith modulus was found to be 17. Of the two methods investigated, the pith-only specimen preparation was found to be simple reliable while the rind-only method was found to be adversely affected by lateral bowing of the specimen. ConclusionsResearchers can use the information in this paper to improve computational models of maize stems in three ways: (1) by incorporating realistic values of the longitudinal modulus of elasticity of pith and rind tissues; (2) by selecting pith and rind properties that match empirically observed ratios; and (3) by incorporating appropriate dependencies between these material properties and water content. From an experimental perspective, the intact/pith-only experimental method outlined in this paper is simpler than previously reported methods and provides reliable estimates of both pith and rind modulus of elasticity values. Further research using this measurement method is recommended to more clearly understand the influence of water content and turgor pressure on tissue properties.more » « less
-
SUMMARY Accurate absolute palaeointensity is essential for understanding dynamo processes on the Earth and other planetary bodies. Although great efforts have been made to propose techniques to obtain magnetic field strength from rock samples, such as Thellier-series methods, the amount of high-fidelity palaeointensities remains limited. One primary reason for this is the thermal alteration of samples that pervasively occurred during palaeointensity experiments. In this study, we developed a comprehensive rock magnetic experiment, termed thermal rock magnetic cycling (TRMC), that can utilize measurements of critical rock magnetic properties at elevated temperatures during multiple heating-cooling cycles to track thermal changes in bulk samples and individual magnetic components with different Curie temperatures in samples for palaeointensity interpretations. We demonstrate this method on a Galapagos lava sample, GA 84.6. The results for this specimen revealed that GA 84.6v underwent thermophysical alteration throughout the TRMC experiment, resulting in changes in its remanence carrying capacity. These findings were then used to interpret the palaeointensity results of specimen GA 84.6c, which revealed that the two-slope Arai plot yielded two linear segments with distinct palaeointensity values that were both biased by thermophysical alteration. To further test the TRMC method, we selected another historical lava sample (HS 2) from Mt Lassen, detecting slight thermal-physical changes after heating the specimen HS 2–8C to a target temperature of 400 °C. We also isolated a stable magnetic component with a Curie temperature below 400 °C using the TRMC method, which may provide a more reliable palaeointensity estimate of 51 μT. By providing a method for tracking thermal alteration independent of palaeointensity experiments, the TRMC method can explore subtle, unrecognizable thermal alteration processes in less detailed palaeointensity measurements, which can help to assess the thermal stability of the measured samples and interpret the changes in the TRM unblocking spectrum and palaeointensity estimates, facilitating the acquisition of more reliable records for constrain the formation of the inner core and the evolution of Earth's magnetic field.more » « less
-
Pore-scale modeling is essential in understanding and predicting flow and transport properties of rocks. Generally, pore-scale modeling is dependent on imaging technologies such as Micro Computed Tomography (micro-CT), which provides visual confirmation into the pore microstructures of rocks at a representative scale. However, this technique is limited in the ability to provide high resolution images showing the pore-throats connecting pore bodies. Pore scale simulations of flow and transport properties of rocks are generally done on a single 3D pore microstructure image. As such, the simulated properties are only representative of the simulated pore-scale rock volume. These are the technological and computational limitations which we address here by using a stochastic pore-scale simulation approach. This approach consists of constructing hundreds of 3D pore microstructures of the same pore size distribution and overall porosity but different pore connectivity. The construction of the 3D pore microstructures incorporates the use of Mercury Injection Capillary Pressure (MICP) data to account for pore throat size distribution, and micro-CT images to account for pore body size distribution. The approach requires a small micro-CT image volume (7–19 mm3) to reveal key pore microstructural features that control flow and transport properties of highly heterogeneous rocks at the core-scale. Four carbonate rock samples were used to test the proposed approach. Permeability calculations from the introduced approach were validated by comparing laboratory measured permeability of rock cores and permeability estimated using five well-known core-scale empirical model equations. The results show that accounting for the stochastic connectivity of pores results in a probabilistic distribution of flow properties which can be used to upscale pore-scale simulated flow properties to the core-scale. The use of the introduced stochastic pore-scale simulation approach is more beneficial when there is a higher degree of heterogeneity in pore size distribution. This is shown to be the case with permeability and hydraulic tortuosity which are key controls of flow and transport processes in rocks.more » « less
An official website of the United States government
