- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bater, Johes (3)
-
Machanavajjhala, Ashwin (3)
-
Nayak, Kartik (3)
-
Wang, Chenghong (3)
-
Lentz, Matthew (1)
-
Pujol, David (1)
-
Vasudevan, Lavanya (1)
-
Yang, Jun (1)
-
Zhang, Yanping (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we consider secure outsourced growing databases (SOGDB) that support view-based query answering. These databases allow untrusted servers to privately maintain a materialized view. This allows servers to use only the materialized view for query processing instead of accessing the original data from which the view was derived. To tackle this, we devise a novel view-based SOGDB framework, Incshrink. The key features of this solution are: (i) Incshrink maintains the view using incremental MPC operators which eliminates the need for a trusted third party upfront, and (ii) to ensure high performance, Incshrink guarantees that the leakage satisfies DP in the presence of updates. To the best of our knowledge, there are no existing systems that have these properties. We demonstrate Incshrink's practical feasibility in terms of efficiency and accuracy with extensive experiments on real-world datasets and the TPC-ds benchmark. The evaluation results show that Incshrink provides a 3-way trade-off in terms of privacy, accuracy and efficiency, and offers at least a 7,800x performance advantage over standard SOGDB that do not support view-based query paradigm.more » « less
-
Wang, Chenghong; Bater, Johes; Nayak, Kartik; Machanavajjhala, Ashwin (, SIGMOD '21: Proceedings of the 2021 International Conference on Management of Data)In this paper, we consider privacy-preserving update strategies for secure outsourced growing databases. Such databases allow appendonly data updates on the outsourced data structure while analysis is ongoing. Despite a plethora of solutions to securely outsource database computation, existing techniques do not consider the information that can be leaked via update patterns. To address this problem, we design a novel secure outsourced database framework for growing data, DP-Sync, which interoperate with a large class of existing encrypted databases and supports efficient updates while providing differentially-private guarantees for any single update. We demonstrate DP-Sync's practical feasibility in terms of performance and accuracy with extensive empirical evaluations on real world datasets.more » « less
-
Zhang, Yanping; Wang, Chenghong; Pujol, David; Bater, Johes; Lentz, Matthew; Machanavajjhala, Ashwin; Nayak, Kartik; Vasudevan, Lavanya; Yang, Jun (, SenSys '20: Proceedings of the 18th Conference on Embedded Networked Sensor Systems)Physical distancing between individuals is key to preventing the spread of a disease such as COVID-19. On the one hand, having access to information about physical interactions is critical for decision makers; on the other, this information is sensitive and can be used to track individuals. In this work, we design Poirot, a system to collect aggregate statistics about physical interactions in a privacy-preserving manner. We show a preliminary evaluation of our system that demonstrates the scalability of our approach even while maintaining strong privacy guarantees.more » « less
An official website of the United States government
