skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2029948

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Anthropogenic interference has been a long-standing problem for radio astronomy. In a previous paper, we presented a study of interference mitigation methods based on the concept of coherent time-domain canceling, which ideally allows one to “look through” interference, as opposed to avoiding the interference or deleting the afflicted data. The focus of that paper was on “reference antenna” methods, in which a separately acquired signal containing the interference waveform is used to identify the interference waveform in the primary signal. In this paper, we shift focus to methods in which the reference signal is instead a parametric model of the waveform, so that no additional antenna is needed. As in our previous paper, we present a rigorous theoretical analysis of performance. Findings are demonstrated using real-world interference from the Iridium system. We find that interference suppression is possible if the product of the interference-to-noise ratio and the number of statistically independent samples is greater than 1, and that suppression increases linearly with this product. However good performance is achieved only for interferers whose bandwidth is much less than the sample rate, and algorithm parameters must be carefully selected to avoid undesirable distortion of the noise spectral baseline. 
    more » « less
  2. This paper describes methods for accurate pattern modeling of large axisymmetric paraboloidal focus-fed reflector antenna systems. We demonstrate that the incorporation of the developed pattern models helps in advancing the state-of-the-art in coherent time-domain canceling (CTC) for interference mitigation in radio astronomy. The first method yields a closed form expression for the antenna pattern with parameters accounting for the focal ratio and feed pattern. In subsequent adaptive methods, parameters of this model are calculated using measurements of interference signals. The corrected pattern model improves the prediction of the change in the true pattern for future times. The methods are compared by (1) comparing the error in the pattern model with respect to the true pattern and (2) comparing the pattern value update period required to achieve a specified level of residual interference when used in CTC. The efficacy of the pattern modeling methods is demonstrated by showing that the error in the pattern model decreases and the pattern value needs to be updated at a much slower rate for effective CTC. 
    more » « less
  3. Signals from satellites are a source of interference to radio telescopes. One possible scheme for mitigation of this interference is coherent time-domain canceling. Using a simple but broadly-applicable model for the antenna pattern, we show how the antenna pattern combined with the motion of the satellite limits the time available to compute an accurate estimate of the interference waveform, which subsequently limits the extent to which interference can be canceled in the output. We suggest a simple remedy to the problem. 
    more » « less
  4. Abstract Radio astronomy is vulnerable to interference from a variety of anthropogenic sources. Among the many strategies for mitigation of this interference is coherent time-domain canceling (CTC), which ideally allows one to “look through” interference, as opposed to avoiding the interference or deleting the afflicted data. However, CTC is difficult to implement, not well understood, and at present this strategy is not in regular use at any major radio telescope. This paper presents a review of CTC including a new comprehensive study of the capabilities and limitations of CTC using metrics relevant to radio astronomy, including fraction of interference power removed and increase in noise. This work is motivated by the emergence of a new generation of communications systems which pose a significantly increased threat to radio astronomy and which may overwhelm mitigation methods now in place. 
    more » « less