skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coherent Time-domain Canceling of Interference for Radio Astronomy
Abstract Radio astronomy is vulnerable to interference from a variety of anthropogenic sources. Among the many strategies for mitigation of this interference is coherent time-domain canceling (CTC), which ideally allows one to “look through” interference, as opposed to avoiding the interference or deleting the afflicted data. However, CTC is difficult to implement, not well understood, and at present this strategy is not in regular use at any major radio telescope. This paper presents a review of CTC including a new comprehensive study of the capabilities and limitations of CTC using metrics relevant to radio astronomy, including fraction of interference power removed and increase in noise. This work is motivated by the emergence of a new generation of communications systems which pose a significantly increased threat to radio astronomy and which may overwhelm mitigation methods now in place.  more » « less
Award ID(s):
2029948
PAR ID:
10445699
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
134
Issue:
1041
ISSN:
0004-6280
Page Range / eLocation ID:
114505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes methods for accurate pattern modeling of large axisymmetric paraboloidal focus-fed reflector antenna systems. We demonstrate that the incorporation of the developed pattern models helps in advancing the state-of-the-art in coherent time-domain canceling (CTC) for interference mitigation in radio astronomy. The first method yields a closed form expression for the antenna pattern with parameters accounting for the focal ratio and feed pattern. In subsequent adaptive methods, parameters of this model are calculated using measurements of interference signals. The corrected pattern model improves the prediction of the change in the true pattern for future times. The methods are compared by (1) comparing the error in the pattern model with respect to the true pattern and (2) comparing the pattern value update period required to achieve a specified level of residual interference when used in CTC. The efficacy of the pattern modeling methods is demonstrated by showing that the error in the pattern model decreases and the pattern value needs to be updated at a much slower rate for effective CTC. 
    more » « less
  2. Lemmens, S; Flohrer, T; Schmitz, F (Ed.)
    Radio telescopes observe extremely faint emission from astronomical objects, ranging from compact sources to large scale structures that can be seen across the whole sky. Satellites actively transmit at radio frequencies (particularly at 10±20 GHz, but usage of increasing broader frequency ranges are already planned for the future by satellite operators), and can appear as bright as the Sun in radio astronomy observations. Remote locations have historically enabled telescopes to avoid most interference, however this is no longer the case with dramatically increasing numbers of satellites that transmit everywhere on Earth. Even more remote locations such as the far side of the Moon may provide new radio astronomy observation opportunities, but only if they are protected from satellite transmissions. Improving our understanding of satellite transmissions on radio telescopes across the whole spectrum and beyond is urgently needed to overcome this new observational challenge, as part of ensuring the future access to dark and quiet skies. In this contribution we summarise the current status of observations of active satellites at radio frequencies, the implications for future astronomical observations, and the longer-term consequences of an increasing number of active satellites. This will include frequencies where satellites actively transmit, where they unintentionally also transmit, and considerations about thermal emission and other unintended emissions. This work is ongoing through the IAU CPS. 
    more » « less
  3. Signals from satellites are a source of interference to radio telescopes. One possible scheme for mitigation of this interference is coherent time-domain canceling. Using a simple but broadly-applicable model for the antenna pattern, we show how the antenna pattern combined with the motion of the satellite limits the time available to compute an accurate estimate of the interference waveform, which subsequently limits the extent to which interference can be canceled in the output. We suggest a simple remedy to the problem. 
    more » « less
  4. As radio spectrum becomes increasingly scarce, coexistence and bidirectional sharing between active and passive systems becomes a crucial target. In the past, spectrum regulations conferred radio astronomy a status on par with active services, thereby protecting their extreme sensitivity against any harmful interference. However, passive systems are likely to lose exclusive allocations as capacity constraints for active systems increase. The resulting increase in ambient radio frequency noise from various terrestrial and non-terrestrial emitters can only be mitigated with informed collaboration between active and passive users. While coexistence using time-division spectrum access has been proposed in the past, a more dynamic approach following the CBRS sharing principle promises greater spectral occupancy and efficiency, enabled by a spectrum access system capable of constantly monitoring the ambient RF environment. Instead of simply minimizing the potential for any ”harmful” interference to passive users, the goal is to use good engineering to enable sharing between active and passive users. To this end, this research created a Software Defined Radio (SDR)-based testbed at the the Hat Creek Radio Observatory to quantitatively characterize the radio-frequency environment, and flag potential sources of radio frequency interference in the vicinity of the Allen Telescope Array. Sensor validation was carried out via data analysis of I/Q data collected in well-characterized RF bands. Results so far from ground and drone-based surveys are consistent with the expected sources of interference, based on both the deployment of static RF transmitters in the Hat Creek/Redding area as well as the interference detected in telescope observations themselves. 
    more » « less
  5. The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly that from geostationary satellites which are visible from the AMI site when observing at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators – one for each of AMI's two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two sub-bands, each of which are filtered to a width of 2.3 GHz and digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved. 
    more » « less