skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2030096

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dasgupta, Sanjoy; Mandt, Stephen; Li, Yingzhen i (Ed.)
    In this article, the optimal sample complexity of learning the underlying interactions or dependencies of a Linear Dynamical System (LDS) over a Directed Acyclic Graph (DAG) is studied. We call such a DAG underlying an LDS as dynamical DAG (DDAG). In particular, we consider a DDAG where the nodal dynamics are driven by unobserved exogenous noise sources that are wide-sense stationary (WSS) in time but are mutually uncorrelated, and have the same power spectral density (PSD). Inspired by the static DAG setting, a metric and an algorithm based on the PSD matrix of the observed time series are proposed to reconstruct the DDAG. It is shown that the optimal sample complexity (or length of state trajectory) needed to learn the DDAG is n = Θ(q log(p/q)), where p is the number of nodes and q is the maximum number of parents per node. To prove the sample complexity upper bound, a concentration bound for the PSD estimation is derived, under two different sampling strategies. A matching min-max lower bound using generalized Fano’s inequality also is provided, thus showing the order optimality of the proposed algorithm. The codes used in the paper are available at https://github.com/Mishfad/Learning-Dynamical-DAGs 
    more » « less
  2. We consider a networked linear dynamical system with p agents/nodes. We study the problem of learning the underlying graph of interactions/dependencies from observations of the nodal trajectories over a time-interval T. We present a regularized non-casual consistent estimator for this problem and analyze its sample complexity over two regimes: (a) where the interval T consists of n i.i.d. observation windows of length T/n (restart and record), and (b) where T is one continuous observation window (consecutive). Using the theory of M-estimators, we show that the estimator recovers the underlying interactions, in either regime, in a time-interval that is logarithmic in the system size p. To the best of our knowledge, this is the first work to analyze the sample complexity of learning linear dynamical systems driven by unobserved not-white wide-sense stationary (WSS) inputs. 
    more » « less
  3. We consider a networked linear dynamical system with p agents/nodes. We study the problem of learning the underlying graph of interactions/dependencies from observations of the nodal trajectories over a time-interval T. We present a regularized non-casual consistent estimator for this problem and analyze its sample complexity over two regimes: (a) where the interval T consists of n i.i.d. observation windows of length T/n (restart and record), and (b) where T is one continuous observation window (consecutive). Using the theory of M-estimators, we show that the estimator recovers the underlying interactions, in either regime, in a time-interval that is logarithmic in the system size p. To the best of our knowledge, this is the first work to analyze the sample complexity of learning linear dynamical systems driven by unobserved not-white wide-sense stationary (WSS) inputs. 
    more » « less