skip to main content

Search for: All records

Award ID contains: 2030251

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 16, 2024
  2. Ko, Steve (Ed.)
    Today's smart devices have short battery lifetimes, high installation and maintenance costs, and rapid obsolescence - all leading to the explosion of electronic waste in the past two decades. These problems will worsen as the number of connected devices grows to one trillion by 2035. Energy harvesting, battery-free devices offer an alternative. Getting rid of the battery reduces e-waste, promises long lifetimes, and enables deployment in new applications and environments. Unfortunately, developing sophisticated inference-capable applications is still challenging. The lack of platform support for advanced (32-bit) microprocessors and specialized accelerators, which can execute dataintensive machine-learning tasks, has held back batteryless devices. 
    more » « less
    Free, publicly-accessible full text available May 17, 2024
  3. We consider a model in which two competing wireless service providers with licensed spectrum may pool a portion of their spectrum to better exploit statistical multiplexing. Given an amount of pooled spectrum, the providers engage in Cournot competition. We study the impact of pooling spectrum on the outcome of this competition and show that the gains from multiplexing are dissipated due to the competition among the providers. 
    more » « less
  4. In this paper, we study a fresh data acquisition problem to acquire fresh data and optimize the age-related performance when strategic data sources have private market information. We consider an information update system in which a destination acquires, and pays for, fresh data updates from a source. The destination incurs an age-related cost, modeled as a general increasing function of the age-of-information (AoI). The source is strategic and incurs a sampling cost, which is its private information and may not be truthfully reported to the destination. To this end, we design an optimal (economic) mechanism for timely information acquisition by generalizing Myerson's seminal work. The goal is to minimize the sum of the destination's age-related cost and its payment to the source, while ensuring that the source truthfully reports its private information and will voluntarily participate in the mechanism. Our results show that, under some distributions of the source's cost, our proposed optimal mechanism can lead to an unbounded benefit, compared against a benchmark that naively trusts the source's report and thus incentivizes its maximal over-reporting. 
    more » « less