skip to main content


Search for: All records

Award ID contains: 2030935

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper explores the relationship between high school students’ shifting computer science (CS) identity and engagement over the course of one school year in both Advanced Placement Computer Science Principles and Exploring Computer Science classrooms in a large US west coast urban school district. Through an analysis of over 500 pre- and post-surveys administered during the 2018-19 school year—with an intersectional analysis comparing Latina and Latino perspectives in this primarily low-income, Latino/a/x school district—this paper answers the following research questions: (1) Who identifies as “CS people” and what does that mean to them? and (2) Which teaching practices seem to have the greatest relationship with CS identification and engagement? 
    more » « less
  2. Taking a justice-oriented approach to equity in Computer Science (CS) education, this paper questions the dominant discourse in CS education and asks what truly makes CS learning consequential from the perspective of youth. We define CS learning as consequential by focusing on its transformative impact on youth identity, agency, and perceptions of the world within and beyond CS classrooms, regardless of whether or not they pursue CS in the future. Our research-practice partnership used qualitative data, specifically longitudinal interview data with 30 students up to three years after they first experienced a high school CS class in a large public school district on the west coast serving majority Latinx, urban, low-income students. Our findings suggest that in order for CS learning to be meaningful and consequential for youth, learning must involve: 1) freedom for youth to express their interests, passions, and concerns; 2) opportunities for youth to expand their views of CS and self; and 3) teacher care for students, learning community, and subject matter. The findings have significant implications for the broader “CS for All” movement and future efforts to reform policy agendas aiming for a more justice-centered CS education. 
    more » « less
  3. The Computer Science for All movement is bringing CS to K-12 classrooms across the nation. At the same time, new technologies created by computer scientists have been reproducing existing inequities that directly impact today's youth, while being “promoted and perceived as more objective or progressive than the discriminatory systems of a previous era” [1, p. 5–6]. Current efforts are being made to expose students to the social impact and ethics of computing at both the K-12 and university-level—which we refer to as “socially responsible computing” (SRC) in this paper. Yet there is a lack of research describing what such SRC teaching and learning actively involve and look like, particularly in K-12 classrooms. This paper fills this gap with findings from a research-practice partnership, through a qualitative study in an Advanced Placement Computer Science Principles classroom enrolling low-income Latino/a/x students from a large urban community. The findings illustrate 1) details of teaching practice and student learning during discussions about SRC; 2) the impact these SRC experiences have on student engagement with CS; 3) a teacher's reflections on key considerations for effective SRC pedagogy; and 4) why students’ perspectives and agency must be centered through SRC in computing education. 
    more » « less