The expansion of computer science (CS) into K-12 contexts has resulted in a diverse ecosystem of curricula designed for various grade levels, teaching a variety of concepts, and using a wide array of different programming languages and environments. Many students will learn more than one programming language over the course of their studies. There is a growing need for computer science assessment that can measure student learning over time, but the multilingual learning pathways create two challenges for assessment in computer science. First, there are not validated assessments for all of the programming languages used in CS classrooms. Second, it is difficult to measure growth in student understanding over time when students move between programming languages as they progress in their CS education. In this position paper, we argue that the field of computing education research needs to develop methods and tools to better measure students' learning over time and across the different programming languages they learn along the way. In presenting this position, we share data that shows students approach assessment problems differently depending on the programming language, even when the problems are conceptually isomorphic, and discuss some approaches for developing multilingual assessments of student learning over time.
more »
« less
“What Happens to the Raspado man in a Cash-free Society?”: Teaching and Learning Socially Responsible Computing
The Computer Science for All movement is bringing CS to K-12 classrooms across the nation. At the same time, new technologies created by computer scientists have been reproducing existing inequities that directly impact today's youth, while being “promoted and perceived as more objective or progressive than the discriminatory systems of a previous era” [1, p. 5–6]. Current efforts are being made to expose students to the social impact and ethics of computing at both the K-12 and university-level—which we refer to as “socially responsible computing” (SRC) in this paper. Yet there is a lack of research describing what such SRC teaching and learning actively involve and look like, particularly in K-12 classrooms. This paper fills this gap with findings from a research-practice partnership, through a qualitative study in an Advanced Placement Computer Science Principles classroom enrolling low-income Latino/a/x students from a large urban community. The findings illustrate 1) details of teaching practice and student learning during discussions about SRC; 2) the impact these SRC experiences have on student engagement with CS; 3) a teacher's reflections on key considerations for effective SRC pedagogy; and 4) why students’ perspectives and agency must be centered through SRC in computing education.
more »
« less
- Award ID(s):
- 2030935
- NSF-PAR ID:
- 10344346
- Date Published:
- Journal Name:
- ACM Transactions on Computing Education
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1946-6226
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway.more » « less
-
BRIGHT-CS (Building Student Retention through Individuated Guided coHort Training in Computer Science) is a research and development project that 1) creates a computer science learning ecosystem for middle school Black girls and other girls of color and 2) researches the merits of the ecosystem in supporting persistence in CS to determine best practices for broadening participation to other marginalized student groups in computing. First, this paper describes the BRIGHT-CS program, from the structural, instructional, and curricular designs of the program to partnerships with local and community organizations that make up the ecosystem. Second, it presents the initial findings of research on the program and its impacts on student outcomes such as social-emotional attributes associated with persistence. The study employs a multi-method descriptive design. Data includes student surveys, interviews (from students, parents, instructors, teachers, and mentors), artifact reviews, and student observations. The study includes 46 students across four middle schools in two states. At the start of the program, 37% of the students reported being very interested in CS, and 72% reported being very confident in learning CS. This is much higher than a national benchmark of students. After four months of program implementation, the qualitative results show a more nuanced picture of the value of a learning ecosystem. First, the ecosystem offers implicit messaging about equity and success. Second, the ecosystem offers explicit messaging about personal challenges and improvement. Third, following the implicit and explicit messaging to students, students went from naïve confidence to authentic self-efficacy in CS.more » « less
-
The dearth of women and people of color in the field of computer science is a well-documented phenomenon. Following Obama's 2016 declaration of the need for a nationwide CS for All movement in the US, educators, school districts, states and the US-based National Science Foundation have responded with an explosion of activity directed at developing computer science learning opportunities in K-12 settings. A major component of this effort is the creation of equitable CS learning opportunities for underrepresented populations. As a result, there exists a strong need for educational research on the development of equity-based theory and practice in CS education. This poster session reports on a work-in-progress study that uses a case study approach to engage twenty in-service elementary school teachers in reflecting on issues of equity in CS education as part of a three-day CS professional development workshop. Our work is unfolding in the context of a four-year university/district research practice partnership in a mid-sized city in the Northeastern United States. Teachers in our project are working to co-design integrated CS curriculum units for K-5 classrooms. We developed four case studies, drawn from the first year of our project, that highlight equity challenges teachers faced in the classroom when implementing the CS lessons. The case studies follow the "Teacher Moments" template created by the Teaching Systems Lab in Open Learning at MIT. The case study activity is meant to deepen reflection and discussion on how to create equitable learning opportunities for elementary school students. We present preliminary findings.more » « less
-
null (Ed.)To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies.more » « less