Jetted astrophysical phenomena with black hole engines, including binary mergers, jetted tidal disruption events, and X-ray binaries, require a large-scale vertical magnetic field for efficient jet formation. However, a dynamo mechanism that could generate these crucial large-scale magnetic fields has not been identified and characterized. We have employed three-dimensional global general relativistic magnetohydrodynamical simulations of accretion discs to quantify, for the first time, a dynamo mechanism that generates large-scale magnetic fields. This dynamo mechanism primarily arises from the non-linear evolution of the magnetorotational instability (MRI). In this mechanism, large non-axisymmetric MRI-amplified shearing wave modes, mediated by the axisymmetric azimuthal magnetic field, generate and sustain the large-scale vertical magnetic field through their non-linear interactions. We identify the advection of magnetic loops as a crucial feature, transporting the large-scale vertical magnetic field from the outer regions to the inner regions of the accretion disc. This leads to a larger characteristic size of the, now advected, magnetic field when compared to the local disc height. We characterize the complete dynamo mechanism with two time-scales: one for the local magnetic field generation, $t_{\rm gen}$, and one for the large-scale scale advection, $t_{\rm adv}$. Whereas the dynamo we describe is non-linear, we explore the potential of linear mean field models to replicate its core features. Our findings indicate that traditional $\alpha$-dynamo models, often computed in stratified shearing box simulations, are inadequate and that the effective large-scale dynamics is better described by the shear current effects or stochastic $\alpha$-dynamos.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract The conventional accretion disk lore is that magnetized turbulence is the principal angular momentum transport process that drives accretion. However, when dynamically important large-scale magnetic fields thread an accretion disk, they can produce mass and angular momentum outflows, known as winds
, that also drive accretion. Yet, the relative importance of turbulent and wind-driven angular momentum transport is still poorly understood. To probe this question, we analyze a long-duration (1.2 × 105r g /c ) simulation of a rapidly rotating (a = 0.9) black hole feeding from a thick (H /r ∼ 0.3), adiabatic, magnetically arrested disk (MAD), whose dynamically important magnetic field regulates mass inflow and drives both uncollimated and collimated outflows (i.e., winds and jets, respectively). By carefully disentangling the various angular momentum transport processes within the system, we demonstrate the novel result that disk winds and disk turbulence both extract roughly equal amounts of angular momentum from the disk. We find cumulative angular momentum and mass accretion outflow rates of and , respectively. This result suggests that understanding both turbulent and laminar stresses is key to understanding the evolution of systems where geometrically thick MADs can occur, such as the hard state of X-ray binaries, low-luminosity active galactic nuclei, some tidal disruption events, and possibly gamma-ray bursts. -
From Feast to Famine: A Systematic Study of Accretion onto Oblique Pulsars with 3D GRMHD Simulations
Abstract Disk-fed accretion onto neutron stars can power a wide range of astrophysical sources ranging from X-ray binaries, to accretion-powered millisecond pulsars, ultraluminous X-ray sources, and gamma-ray bursts. A crucial parameter controlling the gas–magnetosphere interaction is the strength of the stellar dipole. In addition, coherent X-ray pulsations in many neutron star systems indicate that the star's dipole moment is oblique relative to its rotation axis. Therefore, it is critical to systematically explore the 2D parameter space of the star's magnetic field strength and obliquity, which is what this work does, for the first time, in the framework of 3D general-relativistic magnetohydrodynamics. If the accretion disk carries its own vertical magnetic field, this introduces an additional factor: the relative polarity of the disk and stellar magnetic fields. We find that depending on the strength of the stellar dipole and the star–disk relative polarity, the neutron star's jet power can either increase or decrease with increasing obliquity. For weak dipole strength (equivalently, high accretion rate), the parallel polarity results in a positive correlation between jet power and obliquity, whereas the antiparallel orientation displays the opposite trend. For stronger dipoles, the relative-polarity effect disappears, and jet power always decreases with increasing obliquity. The influence of the relative polarity gradually disappears as obliquity increases. Highly oblique pulsars tend to have an increased magnetospheric radius, a lower mass accretion rate, and enter the propeller regime at lower magnetic moments than aligned stars.
Free, publicly-accessible full text available January 1, 2025 -
Abstract Accreting supermassive black holes (SMBHs) produce highly magnetized relativistic jets that tend to collimate gradually as they propagate outward. However, recent radio interferometric observations of the 3C 84 galaxy reveal a stunning, cylindrical jet already at several hundred SMBH gravitational radii,
r ≳ 350r g. We explore how such extreme collimation emerges via a suite of 3D general relativistic magnetohydrodynamic simulations. We consider an SMBH surrounded by a magnetized torus immersed in a constant-density ambient medium that starts at the edge of the SMBH sphere of influence, chosen to be much larger than the SMBH gravitational radius,r B= 103r g. We find that radiatively inefficient accretion flows (e.g., M87) produce winds that collimate the jets into parabolas near the black hole. After the disk winds stop collimating the jets atr ≲r B, they turn conical. Once outsider B, the jets run into the ambient medium and form backflows that collimate the jets into cylinders some distance beyondr B. Interestingly, for radiatively efficient accretion, as in 3C 84, the radiative cooling saps the energy out of the disk winds; at early times, they cannot efficiently collimate the jets, which skip the initial parabolic collimation stage, start out conical near the SMBH, and turn into cylinders already atr ≃ 300r g, as observed in 3C 84. Over time, the jet power remains approximately constant, whereas the mass accretion rate increases; the winds grow in strength and start to collimate the jets, which become quasi-parabolic near the base, and the transition point to a nearly cylindrical jet profile moves outward while remaining insider B. -
Abstract The spin of a newly formed black hole (BH) at the center of a massive star evolves from its natal value due to two competing processes: accretion of gas angular momentum that increases the spin and extraction of BH angular momentum by outflows that decreases the spin. Ultimately, the final, equilibrium spin is set by a balance between both processes. In order for the BH to launch relativistic jets and power a
γ -ray burst (GRB), the BH magnetic field needs to be dynamically important. Thus, we consider the case of a magnetically arrested disk (MAD) driving the spin evolution of the BH. By applying the semianalytic MAD BH spin evolution model of Lowell et al. to collapsars, we show that if the BH accretes ∼20% of its initial mass, its dimensionless spin inevitably reaches small values,a ≲ 0.2. For such spins, and for mass accretion rates inferred from collapsar simulations, we show that our semianalytic model reproduces the energetics of typical GRB jets,L jet∼ 1050erg s−1. We show that our semianalytic model reproduces the nearly constant power of typical GRB jets. If the MAD onset is delayed, this allows powerful jets at the high end of the GRB luminosity distribution,L jet∼ 1052erg s−1, but the final spin remains low,a ≲ 0.3. These results are consistent with the low spins inferred from gravitational wave detections of binary BH mergers. In a companion paper by Gottlieb et al., we use GRB observations to constrain the natal BH spin to bea ≃ 0.2. -
Abstract Black hole (BH) spin can play an important role in galaxy evolution by controlling the amount of energy and momentum ejected from near the BH into the surroundings. We focus on radiatively inefficient and geometrically thick magnetically arrested disks (MADs) that can launch strong BH-powered jets. With an appropriately chosen adiabatic index, these systems can describe either the low-luminosity or highly super-Eddington BH accretion regimes. Using a suite of 3D general relativistic magnetohydrodynamic simulations, we find that for any initial spin, an MAD rapidly spins down the BH to the equilibrium spin of 0 <
a eq≲ 0.1, very low compared toa eq= 1 for the standard thin luminous (Novikov–Thorne) disks. This implies that rapidly accreting (super-Eddington) BHs fed by MADs tend to lose most of their rotational energy to magnetized relativistic outflows. In an MAD, a BH only needs to accrete 20% of its own mass to spin down froma = 1–0.2. We construct a semi-analytic model of BH spin evolution in MADs by taking into account the torques on the BH due to both the hydrodynamic disk and electromagnetic jet components, and find that the low value ofa eqis due to both the jets slowing down the BH rotation and the disk losing a large fraction of its angular momentum to outflows. Our results have crucial implications for how BH spins evolve in active galaxies and other systems such as collapsars, where the BH spin-down timescale can be short enough to significantly affect the evolution of gamma-ray emitting BH-powered jets. -
Abstract Spinning supermassive black holes (BHs) in active galactic nuclei magnetically launch relativistic collimated outflows, or jets. Without angular momentum supply, such jets are thought to perish within 3 orders of magnitude in distance from the BH, well before reaching kiloparsec scales. We study the survival of such jets at the largest scale separation to date, via 3D general relativistic magnetohydrodynamic simulations of rapidly spinning BHs immersed into uniform zero-angular-momentum gas threaded by a weak vertical magnetic field. We place the gas outside the BH sphere of influence, or the Bondi radius, chosen to be much larger than the BH gravitational radius,
R B= 103R g. The BH develops dynamically important large-scale magnetic fields, forms a magnetically arrested disk (MAD), and launches relativistic jets that propagate well outsideR Band suppress BH accretion to 1.5% of the Bondi rate, . Thus, low-angular-momentum accretion in the MAD state can form large-scale jets in Fanaroff–Riley (FR) type I and II galaxies. Subsequently, the disk shrinks and exits the MAD state: barely a disk (BAD), it rapidly precesses, whips the jets around, globally destroys them, and lets 5%–10% of reach the BH. Thereafter, the disk starts rocking back and forth by angles 90°–180°: the rocking accretion disk (RAD) launches weak intermittent jets that spread their energy over a large area and suppress BH accretion to ≲2% . Because the BAD and RAD states tangle up the jets and destroy them well insideR B, they are promising candidates for the more abundant, but less luminous, class of FR0 galaxies. -
Abstract The ongoing LIGO–Virgo–KAGRA observing run O4 provides an opportunity to discover new multimessenger events, including binary neutron star (BNS) mergers such as GW170817 and the highly anticipated first detection of a multimessenger black hole–neutron star (BH–NS) merger. While BNS mergers were predicted to exhibit early optical emission from mildly relativistic outflows, it has remained uncertain whether the BH–NS merger ejecta provides the conditions for similar signals to emerge. We present the first modeling of early near-ultraviolet/optical emission from mildly relativistic outflows in BH–NS mergers. Adopting optimal binary properties, a mass ratio of
q = 2, and a rapidly rotating BH, we utilize numerical relativity and general relativistic magnetohydrodynamic (GRMHD) simulations to follow the binary’s evolution from premerger to homologous expansion. We use an M1 neutrino transport GRMHD simulation to self-consistently estimate the opacity distribution in the outflows and find a bright near-ultraviolet/optical signal that emerges due to jet-powered cocoon cooling emission, outshining the kilonova emission at early time. The signal peaks at an absolute magnitude of ∼−15 a few hours after the merger, longer than previous estimates, which did not consider the first principles–based jet launching. By late 2024, the Rubin Observatory will have the capability to track the entire signal evolution or detect its peak up to distances of ≳1 Gpc. In 2026, ULTRASAT will conduct all-sky surveys within minutes, detecting some of these events within ∼200 Mpc. The BH–NS mergers with higher mass ratios or lower BH spins would produce shorter and fainter signals. -
Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to
r ≳ 1011cm. The disk that forms after a merger of mass ratioq = 2 ejects massive disk winds (3–5 × 10−2M ⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asL j ∼t −2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ 0> 100 retain significant magnetization (σ ≫ 1) atr > 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. -
Abstract In this letter, we investigate Bondi-like accretion flows with zero or low specific angular momentum by performing 3D general relativistic magnetohydrodynamic simulations. In order to check if relativistic jets can be launched magnetically from such flows, we insert a large-scale poloidal magnetic field into the accretion flow and consider a rapidly spinning black hole. We demonstrate that under such conditions the accretion flow needs to initially have specific angular momentum above a certain threshold to eventually reach and robustly sustain the magnetically arrested disk state. If the flow can reach such a state, it can launch very powerful jets at ≳100% energy efficiency. Interestingly, we also find that even when the accretion flow has initial specific angular momentum below the threshold, it can still launch episodic jets with an average energy efficiency of ∼10%. However, the accretion flow has nontypical behaviors such as having different rotation directions at different inclinations and exhibiting persistent outflows along the midplane even in the inner disk region. Our results give plausible explanations as to why jets can be produced from various astrophysical systems that likely lack large gas specific angular momenta, such as Sgr A*, wind-fed X-ray binaries, tidal disruption events, and long-duration gamma-ray bursts.