Accessing high-quality video content can be challenging due to insufficient and unstable network bandwidth. Recent advances in neural enhancement have shown promising results in improving the quality of degraded videos through deep learning. Neural-Enhanced Streaming (NES) incorporates this new approach into video streaming, allowing users to download low-quality video segments and then enhance them to obtain high-quality content without violating the playback of the video stream. We introduce BONES, an NES control algorithm that jointly manages the network and computational resources to maximize the quality of experience (QoE) of the user. BONES formulates NES as a Lyapunov optimization problem and solves it in an online manner with near-optimal performance, making it the first NES algorithm to provide a theoretical performance guarantee. Comprehensive experimental results indicate that BONES increases QoE by 5% to 20% over state-of-the-art algorithms with minimal overhead. Our code is available at https://github.com/UMass-LIDS/bones.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 21, 2025
-
Dual-connectivity streaming is a key enabler of next generation six Degrees Of Freedom (6DOF) Virtual Reality (VR) scene immersion. Indeed, using conventional sub-6 GHz WiFi only allows to reliably stream a low-quality baseline representation of the VR content, while emerging high-frequency communication technologies allow to stream in parallel a high-quality user viewport-specific enhancement representation that synergistically integrates with the baseline representation, to deliver high-quality VR immersion. We investigate holistically as part of an entire future VR streaming system two such candidate emerging technologies, Free Space Optics (FSO) and millimeter-Wave (mmWave) that benefit from a large available spectrum to deliver unprecedented data rates. We analytically characterize the key components of the envisioned dual-connectivity 6DOF VR streaming system that integrates in addition edge computing and scalable 360° video tiling, and we formulate an optimization problem to maximize the immersion fidelity delivered by the system, given the WiFi and mmWave/FSO link rates, and the computing capabilities of the edge server and the users’ VR headsets. This optimization problem is mixed integer programming of high complexity and we formulate a geometric programming framework to compute the optimal solution at low complexity. We carry out simulation experiments to assess the performance of the proposed system using actual 6DOF navigation traces from multiple mobile VR users that we collected. Our results demonstrate that our system considerably advances the traditional state-of-the-art and enables streaming of 8K-120 frames-per-second (fps) 6DOF content at high fidelity.more » « less