Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this work, we analyze data collected by an HF transmitter/receiver radio link, operating as an oblique ionosonde between the McMurdo Station (transmitter) and South Pole Station (receiver) at 4.1, 5.1, 6.0, 6.4, and 7.2 MHz between 28 February and 14 March 2019. To help contextualize the link's data we have performed numerical raytrace simulations to help understand the observations. By considering both the data and simulations, we have identified both single‐ and two‐hop E‐ and F‐region propagation modes in the data, where the multi‐hop modes were observed in the hours around sunrise and sunset in the 4.1 and 5.1 MHz channels. This is an unexpected result given the accepted wisdom that multi‐hop modes, which require a ground scatter component, cannot be supported in Antarctica because of the highly absorptive ice covering much of the continent. Our results show that multi‐hop propagation modes can be supported in the region under specific ionospheric conditions—around sunrise and sunset—if the mode's ground scatter component is collocated with the Transantarctic Mountains. The mountains are located along the great‐circle path between the link's transmitter and receiver. However, the combination of favorable ionospheric and ground scattering conditions makes the detection of the multi‐hop mode a rare occurrence in the data set analyzed here. These findings are critical to data analysis efforts of any current or future oblique ionosonde systems operating in Antarctica and other regions such as the Arctic.more » « less
-
Abstract Small-scale magnetic flux ropes (SMFRs) fill much of the solar wind, but their origin and evolution are debated. We apply our recently developed, improved Grad–Shafranov algorithm for the detection and reconstruction of SMFRs to data from Parker Solar Probe, Solar Orbiter, Wind, and Voyager 1 and 2 to detect events from 0.06 to 10 au. We observe that the axial flux density is the same for SMFRs of all sizes at a fixed heliocentric distance but decreases with distance owing to solar wind expansion. Additionally, using the difference in speed between SMFRs, we find that the vast majority of SMFRs will make contact with others at least once during the 100 hr transit to 1 au. Such contact would allow SMFRs to undergo magnetic reconnection, allowing for processes such as merging via the coalescence instability. Furthermore, we observe that the number of SMFRs with higher axial flux increases significantly with distance from the Sun. Axial flux is conserved under solar wind expansion, but the observation can be explained by a model in which SMFRs undergo turbulent evolution by stochastically merging to produce larger SMFRs. This is supported by the observed log-normal axial flux distribution. Lastly, we derive the global number of SMFRs above 1015Mx near the Sun to investigate whether SMFRs begin their journey as small-scale solar ejections or are continuously generated within the outer corona and solar wind.more » « less
-
Abstract Small-scale interplanetary magnetic flux ropes (SMFRs) are similar to ICMEs in magnetic structure, but are smaller and do not exhibit coronal mass ejection plasma signatures. We present a computationally efficient and GPU-powered version of the single-spacecraft automated SMFR detection algorithm based on the Grad–Shafranov (GS) technique. Our algorithm can process higher resolution data, eliminates selection bias caused by a fixed 〈B〉 threshold, has improved detection criteria demonstrated to have better results on an MHD simulation, and recovers full 2.5D cross sections using GS reconstruction. We used it to detect 512,152 SMFRs from 27 yr (1996–2022) of 3 s cadence Wind measurements. Our novel findings are the following: (1) the SMFR filling factor (∼ 35%) is independent of solar activity, distance to the heliospheric current sheet, and solar wind plasma type, although the minority of SMFRs with diameters greater than ∼0.01 au have a strong solar activity dependence; (2) SMFR diameters follow a log-normal distribution that peaks below the resolved range (≳104km), although the filling factor is dominated by SMFRs between 105and 106km; (3) most SMFRs at 1 au have strong field-aligned flows like those from Parker Solar Probe measurements; (4) the radial density (generally ∼1 detected per 106km) and axial magnetic flux density of SMFRs are higher in faster solar wind types, suggesting that they are more compressed. Implications for the origin of SMFRs and switchbacks are briefly discussed. The new algorithm and SMFR dataset are made freely available.more » « less
-
Abstract Interplanetary magnetic flux ropes (MFRs) are commonly observed structures in the solar wind, categorized as magnetic clouds (MCs) and small-scale MFRs (SMFRs) depending on whether they are associated with coronal mass ejections. We apply machine learning to systematically compare SMFRs, MCs, and ambient solar wind plasma properties. We construct a data set of 3-minute averaged sequential data points of the solar wind’s instantaneous bulk fluid plasma properties using about 20 years of measurements from Wind. We label samples by the presence and type of MFRs containing them using a catalog based on Grad–Shafranov (GS) automated detection for SMFRs and NASA's catalog for MCs (with samples in neither labeled non-MFRs). We apply the random forest machine learning algorithm to find which categories can be more easily distinguished and by what features. MCs were distinguished from non-MFRs with an area under the receiver-operator curve (AUC) of 94% and SMFRs with an AUC of 89%, and had distinctive plasma properties. In contrast, while SMFRs were distinguished from non-MFRs with an AUC of 86%, this appears to rely solely on the 〈B〉 > 5 nT threshold applied by the GS catalog. The results indicate that SMFRs have virtually the same plasma properties as the ambient solar wind, unlike the distinct plasma regimes of MCs. We interpret our findings as additional evidence that most SMFRs at 1 au are generated within the solar wind. We also suggest that they should be considered a salient feature of the solar wind’s magnetic structure rather than transient events.more » « less
-
It has been shown that a proxy determination of the magnetospheric open–closed magnetic field line boundary (OCB) location can be made by examining the ultra-low-frequency (ULF) wave power in magnetometer data, with particular interest in the Pc5 ULF waves with periods of 3–10 min. In this study, we present a climatology of such Pc5 ULF waves using ground-based magnetometer data from the South Pole Station (SPA), McMurdo (MCM) station, and the Automatic Geophysical Observatories (AGOs) located across the Antarctic continent, to infer OCB behavior and variability during geomagnetically quiet times (i.e., Ap < 30 nT). For each season [i.e., austral fall (20 February 2017–20 April 2017), austral winter (20 May 2017–20 July 2017), austral spring (20 August 2017–20 October 2017), and austral summer (20 November 2017–20 January 2018)], north–south (i.e., H-component) magnetic field line residual power–spectral density (PSD) measurements taken during geomagnetically quiet periods within a 60-day window centered at the austral solstice/equinox are averaged in 10-min temporal bins to form the climatology at each station. These residual PSDs thus enable the analysis of Pc5 activity (and lower period “long-band” oscillations) and, thus, OCB location/variability as a function of season and magnetic latitude. The dawn and dusk transitions across the OCB are analyzed, with a discussion of dawn and dusk variability during nominally quiet geomagnetic periods. In addition, latitudinal dependencies of the OCB and peak Pc5 periods at each station are discussed, along with the empirical Tsyganenko model comparisons to our site measurements.more » « less
An official website of the United States government
