Interplanetary magnetic flux ropes (MFRs) are commonly observed structures in the solar wind, categorized as magnetic clouds (MCs) and small-scale MFRs (SMFRs) depending on whether they are associated with coronal mass ejections. We apply machine learning to systematically compare SMFRs, MCs, and ambient solar wind plasma properties. We construct a data set of 3-minute averaged sequential data points of the solar wind’s instantaneous bulk fluid plasma properties using about 20 years of measurements from Wind. We label samples by the presence and type of MFRs containing them using a catalog based on Grad–Shafranov (GS) automated detection for SMFRs and NASA's catalog for MCs (with samples in neither labeled non-MFRs). We apply the random forest machine learning algorithm to find which categories can be more easily distinguished and by what features. MCs were distinguished from non-MFRs with an area under the receiver-operator curve (AUC) of 94% and SMFRs with an AUC of 89%, and had distinctive plasma properties. In contrast, while SMFRs were distinguished from non-MFRs with an AUC of 86%, this appears to rely solely on the 〈
Small-scale interplanetary magnetic flux ropes (SMFRs) are similar to ICMEs in magnetic structure, but are smaller and do not exhibit coronal mass ejection plasma signatures. We present a computationally efficient and GPU-powered version of the single-spacecraft automated SMFR detection algorithm based on the Grad–Shafranov (GS) technique. Our algorithm can process higher resolution data, eliminates selection bias caused by a fixed 〈
- PAR ID:
- 10496447
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 271
- Issue:
- 2
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 42
- Size(s):
- Article No. 42
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract B 〉 > 5 nT threshold applied by the GS catalog. The results indicate that SMFRs have virtually the same plasma properties as the ambient solar wind, unlike the distinct plasma regimes of MCs. We interpret our findings as additional evidence that most SMFRs at 1 au are generated within the solar wind. We also suggest that they should be considered a salient feature of the solar wind’s magnetic structure rather than transient events. -
Abstract Small-scale magnetic flux ropes (SMFRs) fill much of the solar wind, but their origin and evolution are debated. We apply our recently developed, improved Grad–Shafranov algorithm for the detection and reconstruction of SMFRs to data from Parker Solar Probe, Solar Orbiter, Wind, and Voyager 1 and 2 to detect events from 0.06 to 10 au. We observe that the axial flux density is the same for SMFRs of all sizes at a fixed heliocentric distance but decreases with distance owing to solar wind expansion. Additionally, using the difference in speed between SMFRs, we find that the vast majority of SMFRs will make contact with others at least once during the 100 hr transit to 1 au. Such contact would allow SMFRs to undergo magnetic reconnection, allowing for processes such as merging via the coalescence instability. Furthermore, we observe that the number of SMFRs with higher axial flux increases significantly with distance from the Sun. Axial flux is conserved under solar wind expansion, but the observation can be explained by a model in which SMFRs undergo turbulent evolution by stochastically merging to produce larger SMFRs. This is supported by the observed log-normal axial flux distribution. Lastly, we derive the global number of SMFRs above 1015Mx near the Sun to investigate whether SMFRs begin their journey as small-scale solar ejections or are continuously generated within the outer corona and solar wind.
-
Abstract We recently extended our Parker-type transport equation for energetic particle interaction with numerous dynamic small-scale magnetic flux ropes (SMFRs) to include perpendicular diffusion in addition to parallel diffusion. We present a new analytical solution to this equation assuming heliocentric spherical geometry with spherical symmetry for all SMFR acceleration mechanisms present in the transport theory. With the goal of identifying the dominant mechanism(s) through which particles are accelerated by SMFRs, a search was launched to identify events behind interplanetary shocks that could be explained by our new solution and not classical diffusive shock acceleration. Two new SMFR acceleration events were identified in situ for the first time within heliocentric distances of 1 astronomical unit (au) in Helios A data. A Metropolis–Hastings algorithm is employed to fit the new solution to the energetic proton fluxes so that the relative strength of the transport coefficients associated with each SMFR acceleration mechanism can be determined. We conclude that the second-order Fermi mechanism for particle acceleration by SMFRs is more important than first-order Fermi acceleration due to the mean compression of the SMFRs regions during these new events. Furthermore, with the aid of SMFR parameters determined via the Grad–Shafranov reconstruction method, we find that second-order Fermi SMFR acceleration is dominated by the turbulent motional electric field parallel to the guide/background field. Finally, successful reproduction of energetic proton flux data during these SMFR acceleration events also required efficient particle escape from the SMFR acceleration regions.
-
Abstract In this paper, we propose that flux cancellation on small granular scales (≲1000 km) ubiquitously drives reconnection at a multitude of sites in the low solar atmosphere, contributing to chromospheric/coronal heating and the generation of the solar wind. We analyze the energy conversion in these small-scale flux cancellation events using both analytical models and three-dimensional, resistive magnetohydrodynamic (MHD) simulations. The analytical models—in combination with the latest estimates of flux cancellation rates—allow us to estimate the energy release rates due to cancellation events, which are found to be on the order 106–107erg cm−2s−1, sufficient to heat the chromosphere and corona of the quiet Sun and active regions, and to power the solar wind. The MHD simulations confirm the conversion of energy in reconnecting current sheets, in a geometry representing a small-scale bipole being advected toward an intergranular lane. A ribbon-like jet of heated plasma that is accelerated upward could also escape the Sun as the solar wind in an open-field configuration. We conclude that through two phases of atmospheric energy release—precancellation and cancellation—the cancellation of photospheric magnetic flux fragments and the associated magnetic reconnection may provide a substantial energy and mass flux contribution to coronal heating and solar wind generation.
-
Abstract Diagnosing the spatiotemporal pattern of magnetic flux on the Sun is vital for understanding the origin of solar magnetism and activity. Here, we report a new form of flux appearance, magnetic outbreak, using observations with an extremely high spatial resolution of 0.″16 from the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. Magnetic outbreak refers to an early growth of unipolar magnetic flux and its later explosion into fragments, in association with plasma upflow and exploding granulations; each individual fragment has flux of 10 16 –10 17 Mx, moving apart with a velocity of 0.5–2.2 km s −1 . The magnetic outbreak takes place in the hecto-Gauss region of pore moats. In this study, we identify six events of magnetic outbreak during 6 hr observations over an approximately 40″ × 40″ field of view. The newly discovered magnetic outbreak might be the first evidence of the long-anticipated convective blowup.more » « less