skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2033995

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding controls on solute export to streams is challenging because heterogeneous catchments can respond uniquely to drivers of environmental change. To understand general solute export patterns, we used a large‐scale inductive approach to evaluate concentration–discharge (C–Q) metrics across catchments spanning a broad range of catchment attributes and hydroclimatic drivers. We leveraged paired C–Q data for 11 solutes from CAMELS‐Chem, a database built upon an existing dataset of catchment and hydroclimatic attributes from relatively undisturbed catchments across the contiguous USA. Because C–Q relationships with Q thresholds reflect a shift in solute export dynamics and are poorly characterized across solutes and diverse catchments, we analysed C–Q relationships using Bayesian segmented regression to quantify Q thresholds in the C–Q relationship. Threshold responses were rare, representing only 12% of C–Q relationships, 56% of which occurred for solutes predominantly sourced from bedrock. Further, solutes were dominated by one or two C–Q patterns that reflected vertical solute–source distributions. Specifically, solutes predominantly sourced from bedrock had diluting C–Q responses in 43%–70% of catchments, and solutes predominantly sourced from soils had more enrichment responses in 35%–51% of catchments. We also linked C–Q relationships to catchment and hydroclimatic attributes to understand controls on export patterns. The relationships were generally weak despite the diversity of solutes and attribute types considered. However, catchment and hydroclimatic attributes in the central USA typically drove the most divergent export behaviour for solutes. Further, we illustrate how our inductive approach generated new hypotheses that can be tested at discrete, representative catchments using deductive approaches to better understand the processes underlying solute export patterns. Finally, given these long‐term C–Q relationships are from minimally disturbed catchments, our findings can be used as benchmarks for change in more disturbed catchments. 
    more » « less
  2. Abstract Processes that drive variability in catchment solute sourcing, transformation, and transport can be investigated using concentration–discharge (C–Q) relationships. These relationships reflect catchment and in‐stream processes operating across nested temporal scales, incorporating both short and long‐term patterns. Scientists can therefore leverage catchment‐scale C–Q datasets to identify and distinguish among the underlying meteorological, biological, and geological processes that drive solute export patterns from catchments and influence the shape of their respective C–Q relationships. We have synthesized current knowledge regarding the influence of biological, geological, and meteorological processes on C–Q patterns for various solute types across diel to decadal time scales. We identify cross‐scale linkages and tools researchers can use to explore these interactions across time scales. Finally, we identify knowledge gaps in our understanding of C–Q temporal dynamics as reflections of catchment and in‐stream processes. We also lay the foundation for developing an integrated approach to investigate cross‐scale linkages in the temporal dynamics of C–Q relationships, reflecting catchment biogeochemical processes and the effects of environmental change on water quality. This article is categorized under:Science of Water > Hydrological ProcessesScience of Water > Water QualityScience of Water > Water and Environmental Change 
    more » « less
  3. Key Points We re‐evaluate equations proposed by Francis Hall to assess concentration‐discharge ( C ‐ Q ) relationships using newly available long‐term and high‐frequency data sets Across time steps we find that log‐log and log‐linear models perform equally well to describe C ‐ Q relationships Parametrization of storage‐discharge relationships via recession analyses provides additional insight to C ‐ Q relationships 
    more » « less