skip to main content

This content will become publicly available on August 1, 2024

Title: Revisiting the Origins of the Power‐Law Analysis for the Assessment of Concentration‐Discharge Relationships
Key Points We re‐evaluate equations proposed by Francis Hall to assess concentration‐discharge ( C ‐ Q ) relationships using newly available long‐term and high‐frequency data sets Across time steps we find that log‐log and log‐linear models perform equally well to describe C ‐ Q relationships Parametrization of storage‐discharge relationships via recession analyses provides additional insight to C ‐ Q relationships  more » « less
Award ID(s):
2033995 2012123
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Water Resources Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Concentration–discharge (C‐Q) relationships reflect material sources, storage, reaction, proximity, and transport in catchments. Differences in hydrologic pathways and connectivity influence observed C‐Q patterns at the catchment outlet. We examined solute and sediment C‐Q relationships at event and interannual timescales in a small mid‐Atlantic (USA) catchment. We found systematic differences in the C‐Q behaviour of geogenic/exogenous solutes (e.g., calcium and nitrate), biologically associated solutes (e.g., dissolved organic carbon), and particulate materials (e.g., total suspended solids). Negative log(C)–log(Q) regression slopes, indicating dilution, were common for geogenic solutes whereas positive slopes, indicating concentration increase, were common for biologically associated solutes. Biologically associated solutes often exhibited counterclockwise hysteresis during events whereas geogenic solutes exhibited clockwise hysteresis. Across event and interannual timescales, solute C‐Q patterns are linked to the spatial distribution of hydrologic sources and the timing and sequence of hydro‐biogeochemical source contributions to the stream. Groundwater is the primary source of stormflow during the earliest and latest stages of events, whereas precipitation and soil water become increasingly connected to the stream near peakflow. This sequence and timing of flowpath connectivity results in dilution and clockwise hysteresis for geogenic/exogenous solutes and concentration increase and counterclockwise hysteresis for biologically associated solutes. Particulate materials demonstrated positive C‐Q slopes over the long‐term and clockwise hysteresis during individual events. Drivers of particulate and solute C‐Q relationships differ, based on longitudinal and lateral expansion of active channels and changing shear stresses with increasing flows. Although important distinctions exist between the drivers of solute and sediment C‐Q relationships, overall solute and sediment C‐Q patterns at event and interannual timescales reflect consistent catchment hydro‐biogeochemical processes.

    more » « less
  2. Abstract

    Little is known about temporal variability in nitrate concentration responses to changes in discharge on intraannual time scales in large rivers. To investigate this knowledge gap, we used a six‐year data set of daily surface water nitrate concentration and discharge averaged from near‐continuous monitoring at U.S. Geological Survey gaging stations on the Connecticut, Potomac, and Mississippi Rivers, three large rivers that contribute substantial nutrient pollution to important estuaries. Interannually, a comparison of nitrate concentration‐discharge (c‐Q) relationships between a traditional discrete grab sample data set and the near‐continuous data set revealed differing c‐Q slopes, which suggests that sample frequency can impact how we ultimately characterize hydrologic systems. Intraannually, we conducted correlation analyses over 30‐day windows to isolate the strength and direction of monthly c‐Q relationships. Monthly c‐Q slopes in the Potomac were positive (enrichment/mobilization response) in summer and fall and negative (dilution response) and weakly chemostatic (nonsignificant near‐zero c‐Q slope) in winter and spring, respectively. The Connecticut displayed a dilution response year‐round, except summer when it was weakly chemostatic. Mississippi c‐Q slopes were weakly chemostatic in all seasons and showed inconsistent responses to discharge fluctuations. The c‐Q dynamics in the Potomac and Connecticut were correlated (R > 0.3) to river temperature, flow percentile, and calendar day. Minimal correlation in the Mississippi suggests that the large basin area coupled with spatiotemporally variable anthropogenic forcings from substantial land use development created stochastic short‐term c‐Q relationships. Additional work using high‐frequency sensors across large river networks can improve our understanding of spatial source input dynamics in these natural‐human coupled systems.

    more » « less
  3. Abstract

    As drinking‐water scarcity grows worldwide, we need to improve predictions of the quantity and quality of our water resources. An overarching problem for model improvement is that we do not know the geological structure of aquifers in sufficient detail. In this work, we demonstrate that mineral‐water reactions imprint structure in the subsurface that impacts the flow and transport of some chemical species. Specifically, pyrite, a ubiquitous mineral, commonly oxidizes and depletes in the upper layers of the weathering profile in most humid watersheds, only remaining at depths of meters. We hypothesize that variations in concentrations (C) of pyrite‐derived sulfate released into rivers as a function of discharge (q) reflect the rate‐limiting step and depth of pyrite‐oxidizing layers. We found that logC− logqbehaviors thus differ in small and large watersheds in the Susquehanna River Basin as well as in selected watersheds in the Western United States. Although coal mining changes pyrite oxidation from closed to open system with respect to O2, patterns in stream chemistry as a function of discharge are consistent with deep and shallow pyrite oxidation zones in small and large watersheds respectively. Therefore, understanding the subsurface patterns of mineral reactions and how they affect the architecture of aquifers will elucidate patterns of changing river chemistry and our ability to manage water resources in the future under accelerated land use and climate change.

    more » « less
  4. Abstract

    High‐frequency in situ sensors have enabled researchers to measure solute concentrations at a time scale that captures the variability in stream discharge. We analyzed discrete samples and high‐frequency time series of solutes to characterize how nitrate (NO3) and fluorescent dissolved organic matter (fDOM; a proxy for dissolved organic carbon) respond to changes in discharge at annual and intra‐annual timescales across a stream network in New Hampshire, USA. NO3and fDOM exhibited highly variable concentration‐discharge (c‐Q) behavior at intra‐annual scales. Transport limitation, source limitation, and chemostatic behavior were observed to occur within and among years in all our study watersheds. Annual assessment of c‐Q misclassified streams 31% of the time, as the annual time step missed seasonal and event‐induced shifts in c‐Q dynamics. In some instances, anomalous events lasting less than 5% of the year determine the annual c‐Q behavior for a site. Catchment land use appeared to drive some of the variability among watersheds in c‐Q relationships and their temporal variability. Forested streams had highly variable NO3c‐Q behavior and streams draining watersheds with more development had greater variability in fDOM c‐Q behavior. Sample frequency impacts how hydrologic systems are characterized and extrapolating c‐Q behavior from discrete samples alone can bias interpretations of c‐Q dynamics and our understanding of solute transport.

    more » « less
  5. Abstract

    Processes that drive variability in catchment solute sourcing, transformation, and transport can be investigated using concentration–discharge (C–Q) relationships. These relationships reflect catchment and in‐stream processes operating across nested temporal scales, incorporating both short and long‐term patterns. Scientists can therefore leverage catchment‐scale C–Q datasets to identify and distinguish among the underlying meteorological, biological, and geological processes that drive solute export patterns from catchments and influence the shape of their respective C–Q relationships. We have synthesized current knowledge regarding the influence of biological, geological, and meteorological processes on C–Q patterns for various solute types across diel to decadal time scales. We identify cross‐scale linkages and tools researchers can use to explore these interactions across time scales. Finally, we identify knowledge gaps in our understanding of C–Q temporal dynamics as reflections of catchment and in‐stream processes. We also lay the foundation for developing an integrated approach to investigate cross‐scale linkages in the temporal dynamics of C–Q relationships, reflecting catchment biogeochemical processes and the effects of environmental change on water quality.

    This article is categorized under:

    Science of Water > Hydrological Processes

    Science of Water > Water Quality

    Science of Water > Water and Environmental Change

    more » « less