Abstract The 30 yr orbit of the Cepheid Polaris has been followed with observations by the Center for High Angular Resolution Astronomy (CHARA) Array from 2016 through 2021. An additional measurement has been made with speckle interferometry at the Apache Point Observatory. Detection of the companion is complicated by its comparative faintness—an extreme flux ratio. Angular diameter measurements appear to show some variation with pulsation phase. Astrometric positions of the companion were measured with a custom grid-based model-fitting procedure and confirmed with the CANDID software. These positions were combined with the extensive radial velocities (RVs) discussed by Torres to fit an orbit. Because of the imbalance of the sizes of the astrometry and RV data sets, several methods of weighting are discussed. The resulting mass of the Cepheid is 5.13 ± 0.28M⊙. Because of the comparatively large eccentricity of the orbit (0.63), the mass derived is sensitive to the value found for the eccentricity. The mass combined with the distance shows that the Cepheid is more luminous than predicted for this mass from evolutionary tracks. The identification of surface spots is discussed. This would give credence to the identification of a radial velocity variation with a period of approximately 120 days as a rotation period. Polaris has some unusual properties (rapid period change, a phase jump, variable amplitude, and unusual polarization). However, a pulsation scenario involving pulsation mode, orbital periastron passage, and low pulsation amplitude can explain these characteristics within the framework of pulsation seen in Cepheids.
more »
« less
The Orbit and Mass of the Cepheid AW Per
Abstract The Cepheid AW Per is a component in a multiple system with a long-period orbit. The radial velocities of Griffin cover the 38 yr orbit well. An extensive program of interferometry with the Center for High Angular Resolution Astronomy array is reported here, from which the long-period orbit is determined. In addition, a Hubble Space Telescope high-resolution spectrum in the ultraviolet demonstrates that the companion is itself a binary with nearly equal-mass components. These data combined with a distance from Gaia provide a mass of the Cepheid (primary) ofM1= 6.79 ± 0.85M⊙. The combined mass of the secondary isMS= 8.79 ± 0.50M⊙. The accuracy of the mass will be improved after the fourth Gaia data release, expected in approximately two years.
more »
« less
- Award ID(s):
- 2034336
- PAR ID:
- 10569151
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 972
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 145
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aims.We aim to accurately measure the dynamical mass and distance of Cepheids by combining radial velocity measurements with interferometric observations. Cepheid mass measurements are particularly necessary for solving the Cepheid mass discrepancy, while independent distance determinations provide a crucial test of the period–luminosity relation andGaiaparallaxes. Methods.We used the multi-telescope interferometric combiner, the Michigan InfraRed Combiner (MIRC) of the Center for High Angular Resolution Astronomy (CHARA) Array, to detect and measure the astrometric positions of the high-contrast companion orbiting the Galactic Cepheid SU Cygni. We also present new radial velocity measurements from ultraviolet spectra taken with theHubbleSpace Telescope. The combination of interferometric astrometry with optical and ultraviolet spectroscopy provided the full orbital elements of the system, in addition to component masses and the distance to the Cepheid system. Results.We measured the mass of the Cepheid,MA = 4.859 ± 0.058 M⊙, and its two companions,MBa = 3.595 ± 0.033 M⊙andMBb = 1.546 ± 0.009 M⊙. This is the most accurate existing measurement of the mass of a Galactic Cepheid (1.2%). Comparing with stellar evolution models, we show that the mass predicted by the tracks is higher than the measured mass of the Cepheid, which is similar to the conclusions of our previous work. We also measured the distance to the system to be 926.3 ± 5.0 pc, obtaining an unprecedented parallax precision of 6 μas (0.5%), which is the most precise and accurate distance for a Cepheid. This precision is similar to what is expected byGaiafor its last data release (DR5 in ∼2030) for single stars fainter thanG = 13, but is not guaranteed for stars as bright as SU Cyg. Conclusions.We demonstrate that evolutionary models remain incapable of accurately reproducing the measured mass of Cepheids, often predicting higher masses for the expected metallicity, even when factors such as rotation or convective core overshooting are taken into account. Our precise distance measurement allowed us to compare predictions from some period–luminosity relations. We find a disagreement of 0.2–0.5 mag with relations calibrated from photometry, while relations calibrated from a direct distance measurement are in better agreement.more » « less
-
Abstract Classical Wolf–Rayet (WR) stars are descendants of massive OB-type stars that have lost their hydrogen-rich envelopes and are in the final stages of stellar evolution, possibly exploding as Type Ib/c supernovae. It is understood that the mechanisms driving this mass loss are either strong stellar winds and or binary interactions, so intense studies of these binaries including their evolution can tell us about the importance of the two pathways in WR formation. WR 138 (HD 193077) has a period of just over 4 yr and was previously reported to be resolved through interferometry. We report on new interferometric data combined with spectroscopic radial velocities in order to provide a three-dimensional orbit of the system. The precision on our parameters tend to be about an order of magnitude better than previous spectroscopic techniques. These measurements provide masses of the stars, namely,MWR= 13.93 ± 1.49M⊙andMO= 26.28 ± 1.71M⊙. The derived orbital parallax agrees with the parallax from Gaia, namely, with a distance of 2.13 kpc. We compare the system’s orbit to models from BPASS, showing that the system likely may have been formed with little interaction but could have formed through some binary interactions either following or at the start of a red supergiant phase but with the most likely scenario occurring as the red supergiant phase starts for a ∼40M⊙star.more » « less
-
Abstract We present high-precision radial velocity observations of Gaia BH1, the nearest known black hole (BH). The system contains a solar-type G star orbiting a massive dark companion, which could be either a single BH or an inner BH + BH binary. A BH + BH binary is expected in some models where Gaia BH1 formed as a hierarchical triple, which is attractive because they avoid many of the difficulties associated with forming the system through isolated binary evolution. Our observations test the inner binary scenario. We have measured 115 precise RVs of the G star, including 40 from ESPRESSO with a precision of 3–5 m s−1, and 75 from other instruments with a typical precision of 30–100 m s−1. Our observations span 2.33 orbits of the G star and are concentrated near a periastron passage, when perturbations due to an inner binary would be largest. The RVs are well-fit by a Keplerian two-body orbit and show no convincing evidence of an inner binary. UsingREBOUNDsimulations of hierarchical triples with a range of inner periods, mass ratios, eccentricities, and orientations, we show that plausible inner binaries with periodsPinner≳ 1.5 days would have produced larger deviations from a Keplerian orbit than observed. Binaries withPinner≲ 1.5 days are consistent with the data, but these would merge within a Hubble time and would thus imply fine-tuning. We present updated parameters of Gaia BH1's orbit. The RVs yield a spectroscopic mass function —about 7000σabove the ∼2.5M⊙maximum neutron star mass. Including the inclination constraint from Gaia astrometry, this implies a BH mass ofMBH= 9.27 ± 0.10M⊙.more » « less
-
Abstract The LHS 1610 system consists of a nearby (d= 9.7 pc) M5 dwarf hosting a candidate brown dwarf companion in a 10.6 days, eccentric (e∼ 0.37) orbit. We confirm this brown dwarf designation and estimate its mass ( MJup) and inclination (114.5° ) by combining discovery radial velocities (RVs) from the Tillinghast Reflector Echelle Spectrograph and new RVs from the Habitable-zone Planet Finder with the available Gaia astrometric two-body solution. We highlight a discrepancy between the measurement of the eccentricity from the Gaia two-body solution (e= 0.52 ± 0.03) and the RV-only solution (e= 0.3702 ± 0.0003). We discuss possible reasons for this discrepancy, which can be further probed when the Gaia astrometric time series become available as part of Gaia Data Release 4. As a nearby mid-M star hosting a massive short-period companion with a well-characterized orbit, LHS 1610 b is a promising target to look for evidence of sub-Alfvénic interactions and/or auroral emission at optical and radio wavelengths. LHS 1610 has a flare rate (0.28 ± 0.07 flares per day) on the higher end for its rotation period (84 ± 8 days), similar to other mid-M dwarf systems such as Proxima Cen and YZ Ceti that have recent radio detections compatible with star–planet interactions. While available Transiting Exoplanet Survey Satellite photometry is insufficient to determine an orbital phase dependence of the flares, our complete orbital characterization of this system makes it attractive to probe star–companion interactions with additional photometric and radio observations.more » « less
An official website of the United States government

